

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FAULT-TOLERANT SEQUENCER USING FPGA-BASED
LOGIC DESIGNS FOR SPACE APPLICATIONS

by

Jason J. Brandt

December 2013

Thesis Co-Advisors: Herschel H. Loomis, Jr.
 James H. Newman

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
FAULT-TOLERANT SEQUENCER USING FPGA-BASED LOGIC DESIGNS
FOR SPACE APPLICATIONS

5. FUNDING NUMBERS

6. AUTHOR(S) Jason J. Brandt
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. government. IRB protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The design of a device that controls the sequence and timing of deployment of CubeSats on the Naval Postgraduate
School’s CubeSat Launcher (NPSCuL) is detailed in this thesis. This design is intended to be implemented on a field-
programmable gate array (FPGA) installed into the NPSCuL. This configuration allows flexibility in reprogramming
the launch sequence and adding additional functionality in future designs.
Operating an FPGA on orbit presents unique challenges due to the radiation environment. Radiation from space
cannot be shielded efficiently, so devices must be tolerant of the expected effects. The most common effect, the
single-event upset can have detrimental effects on operating electronics, causing undesired changes to data.
To combat this problem, fault tolerant techniques, such as triple-modular redundancy (TMR) are explored. In these
methods, multiple redundant copies of the design are operated simultaneously, and the outputs are voted on by special
circuits to eliminate errors. Comparisons between manual and software generated TMR methods are tested, and the
design is implemented on test hardware for further verification. Finally, future research and testing is discussed to
continue to ready the design for employment of the sequencer on an actual space mission.

14. SUBJECT TERMS Single-Event Effect (SEE), Single-Event Upset (SEU), Multiple-Bit Upset
(MBU), Field Programmable Gate Array (FPGA), Fault Tolerance, Triple Modular Redundancy
(TMR), Quadruple Force Decide Redundancy (QFDR), Quadded Logic, CubeSat, Satellite, Actel,
Microsemi, ProASIC3, Xilinx, Virtex, Synplify

15. NUMBER OF
PAGES

159
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

FAULT-TOLERANT SEQUENCER USING FPGA-BASED LOGIC DESIGNS
FOR SPACE APPLICATIONS

Jason J. Brandt
Lieutenant Commander, United States Navy

B.S., University of Colorado, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2013

Author: Jason J. Brandt

Approved by: Herschel H. Loomis. Jr.
Thesis Co-Advisor

James H. Newman
Thesis Co-Advisor

Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iii

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The design of a device that controls the sequence and timing of deployment of CubeSats

on the Naval Postgraduate School’s CubeSat Launcher (NPSCuL) is detailed in this

thesis. This design is intended to be implemented on a field-programmable gate array

(FPGA) installed into the NPSCuL. This configuration allows flexibility in

reprogramming the launch sequence and adding additional functionality in future designs.

Operating an FPGA on orbit presents unique challenges due to the radiation

environment. Radiation from space cannot be shielded efficiently, so devices must be

tolerant of the expected effects. The most common effect, the single-event upset can

have detrimental effects on operating electronics, causing undesired changes to data.

To combat this problem, fault tolerant techniques, such as triple-modular

redundancy (TMR) are explored. In these methods, multiple redundant copies of the

design are operated simultaneously, and the outputs are voted on by special circuits to

eliminate errors. Comparisons between manual and software generated TMR methods

are tested, and the design is implemented on test hardware for further verification.

Finally, future research and testing is discussed to continue to ready the design for

employment of the sequencer on an actual space mission.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE ...1
B. PREVIOUS WORK ...2

1. NPS Configurable Fault-Tolerant Processor Project3
2. Parobek’s Hardware ..3
3. Majewicz’s TMR Research ...4

C. NPSCUL AND SEQUENCER HISTORY ..4
1. NPS Cube Sat Launcher ..4
2. NPSCuL Sequencer ...6

D. THESIS ORGANIZATION ..6

II. FAULT TOLERANCE ..9
A. RADIATION ENVIRONMENT AND EFFECTS ..9

1. Radiation Environment on Orbit ...9
2. Radiation Interactions with Electronic Materials12
3. Radiation Effects on Electronic Component Operation.................15

B. FAULT TOLERANCE BY RADIATION HARDENING18
1. Silicon on Insulator and Silicon on Sapphire19
2. FPGA Technology ..20

a. Anti-fuse FPGAs ...21
b. Flash Based FPGAs ..22
c. SRAM Based FPGAs ..22

C. FAULT TOLERANCE BY LOGIC DESIGN ..24
1. Quadded Logic ...24
2. Quadruple Force Decide Redundancy ...25
3. Triple-Modular Redundancy ..26
4. Triplicated Interwoven Redundancy ...28
5. Error Correcting Codes and Reduced Precision Redundancy29
6. Configuration Scrubbing ..30

D. CHAPTER SUMMARY ..31

III. SEQUENCER DESIGN ..33
A. SEQUENCER HISTORY ...33
B. REQUIREMENTS ...34

1. Operational Requirements ..34
2. Electrical Interface Requirements..35

a. Power Supply ...35
b. Non-Explosive Actuators ..35
c. Door Position Detection ..36

3. Mechanical Requirements ...37
4. Performance Requirements ..38

C. SEQUENCER FLOW AND STATE MACHINE38
1. Flowcharting the Design ..39
2. Developing a State Machine ..41

 viii

D. SOFTWARE DESIGN ..41
1. State Registers ..42
2. Next State Logic ...42

a. Start State ..43
b. Wait State...43
c. Launch State ...44
d. Launch Success ...45
e. Launch Fail ...46
f. Advance ...46

3. Timer ...46
4. Memory ...47
5. 3-Bit Decoder ..47
6. State Encoding ..47

E. HARDWARE DESCRIPTION ..48
1. Hardened Launch Voter..49
2. Input Triplication...50

F. CHAPTER SUMMARY ..51

IV. SEQUENCER FAULT TOLERANCE ..53
A. SOFTWARE IMPLEMENTATION AND TESTING METHODS53

1. Software Tools ..53
2. Testing Methods ...55

a. Potential Error Types ..56
b. Selected Error Sets ..57
c. Configurable Fault Modules ..60

B. SINGLE MODULE PERFORMANCE ...62
1. Timeout Fault ...63
2. P-POD Select Fault ..64
3. State Output Error—MSB ..65
4. State Output Error—LSB ...65

C. MANUAL TMR CONFIGURATION AND PERFORMANCE66
1. Timeout Fault ...69
2. P-POD Select Fault ..70
3. State Output Error—MSB ..70
4. State Output Error—LSB ...71
5. Voter Module Fault..71

D. SOFTWARE TMR CONFIGURATION AND PERFORMANCE72
1. TMR on State out Registers ..74
2. TMR on Top Level Sequencer Module ..75
3. Timeout Fault ...78
4. P-POD Select Fault ..79
5. State Out Errors ...79
6. Voter Module Fault..80

a. Timer Voter Faults ..80
b. Memory Voter Faults ..80
c. State Voter Faults..81

 ix

E. CHAPTER SUMMARY ..81

V. HARDWARE IMPLEMENTATION AND ANALYSIS83
A. FPGA IMPLEMENTATION ...83

1. Design Entry ...83
2. Synthesis..83
3. Place and Route ..85

B. FPGA METRICS ...86
1. Synthesis Results ..86
2. Fault Tolerant Place and Route ..88

C. TIMING ANALYSIS ...90
D. TEST HARDWARE IMPLEMENTATION ...91

1. Board Selection...91
2. Design Modification for Hardware Testing94
3. Hardware Testing ..94

E. CHAPTER SUMMARY ..96

VI. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK97
A. CONCLUSIONS ..97
B. FOLLOW-ON RESEARCH ...98

1. Radiation Testing ...98
2. Place and Route Effects on MBU ...98
3. Additional FPGA Features/Uses ...99
4. Software Comparison ..99

APPENDIX A. DESIGN SCHEMATICS ..101
A. SINGLE SEQUENCER TOP LEVEL SCHEMATIC101
B. SINGLE SEQUENCER WITH FAULT MODULES TOP LEVEL

SCHEMATIC ...102
C. MANUAL TMR SEQUENCER WITH INTERNAL FAULT

MODULES TOP LEVEL SCHEMATIC ..103
1. Manual TMR Basic Sequencer Module ...103
2. Manual TMR Basic Sequencer Module with Fault Modules.......104

D. SOFTWARE TMR SEQUENCER WITH FAULT MODULES105

APPENDIX B. VERILOG CODE ..107
A. STATE REGISTERS...107
B. TIMER MODULE ...107
C. NEXT STATE MODULE ...109
D. SEQUENCE MEMORY MODULE ..113
E. LAUNCH DECODER ...115
F. ONE-BIT VOTER MODULE ..116
G. STATE VOTER MODULE ..117
H. STATE VOTER WITH FAULT INSERTION ...118
I. BEHAVIORAL TEST FIXTURE ..119

LIST OF REFERENCES ..123

INITIAL DISTRIBUTION LIST ...129

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. ProASIC3 test board (from [2]) ...3
Figure 2. Typical 1U CubeSat (from [8]) ..4
Figure 3. NPSCuL 3D model, showing P-PODs mounted inside frame and attached

sequencer and control electronics enclosure (from [10])5
Figure 4. The Van Allen radiation belts around the Earth are being studied and

characterized by NASA (from [11]) ..10
Figure 5. Effects of an ionization event on a transistor inside a typical FPGA (from

[12])..12
Figure 6. Illustration of gamma ray interactions with various types of material.

Areas of dominant interaction types are indicated (from [13])........................13
Figure 7. Effects of the electric field strength and the incident radiation intensity on

recombination of EHPs (from [15]) ...14
Figure 8. Types of non-recoverable single-event effects. (from [16])16
Figure 9. Types of recoverable single-event effects (from [16])17
Figure 10. Simulation of a single-event transient occurring on a clock edge (in red),

causing a missed transition of a flip-flip (in blue) (from [17])18
Figure 11. Example comparing a bulk silicon transistor to Peregrine Semiconductor’s

UltraCMOS (SOS) process (from [20]) ...19
Figure 12. Typical FPGA internal structure (from [24]) ...21
Figure 13. Example of short and open SEUs in an FGPA switch matrix (from [28])23
Figure 14. NOR-based half-adder (a) and quadded logic version (b) (from [32]).25
Figure 15. Basic concept for triple-modular redundancy ..26
Figure 16. TMR with triplicated voter circuits..27
Figure 17. A NAND based half-adder with triple interwoven redundancy (from [36]) ...29
Figure 18. NEA model 9102G non-explosive release mechanism (from [1])36
Figure 19. NPSCuL splitter auxiliary device with wiring harnesses (from [2])37
Figure 20. SAD with PCB design, showing mounting and connector location (from

[2])..38
Figure 21. Sequencer flow chart..40
Figure 22. Sequencer block diagram without fault-tolerant features42
Figure 23. Algorithmic block diagram for the start state. ...43
Figure 24. Algorithmic block diagram for the wait state. ...44
Figure 25. Algorithmic block diagram for the launch state. ...45
Figure 26. Algorithmic block diagram for the launch success state.45
Figure 27. Algorithmic block diagram for the advance state. ...46
Figure 28. Radiation hardened launch voter ...49
Figure 29. A comparison of Verilog and VHDL considering capability and level of

abstraction required (from [47])...54
Figure 30. Xilinx ISE simulator (ISim). ..55
Figure 31. Timeout signal fault location within the sequencer logic.58
Figure 32. P-POD select bus fault location within the sequencer logic.59
Figure 33. State output bus fault location within the sequencer logic.59

 xii

Figure 34. Basic single bit TMR logic circuit. ..60
Figure 35. Using a 4-to-1 multiplexor as a fault insertion module.61
Figure 36. Normal sequencer operation with no fault conditions.62
Figure 37. Normal sequencer operation with key internal waveforms visible.63
Figure 38. Sequencer operation with a fault in the timeout signal.64
Figure 39. Sequencer operation with a fault in the P-POD select signal.64
Figure 40. Sequencer operation with a fault in the MSB of the state variable.65
Figure 41. Sequencer operations with a fault in the LSB of the state variable.66
Figure 42. Block diagram of a DTMR sequencer with hardened launch voters.67
Figure 43. Block diagram of a DTMR sequencer with a single decoder and output

voter. ..68
Figure 44. Manual TMR sequencer operation with no inserted faults.69
Figure 45. Manual TMR sequencer operation with a fault in the timeout signal..............70
Figure 46. Manual TMR sequencer operation with a fault in the P-POD select signal. ...70
Figure 47. Manual TMR sequencer operation with a fault in the MSB of the state

variable. ..71
Figure 48. Manual TMR sequencer operation with a fault in the LSB of the state

variable. ..71
Figure 49. Manual TMR sequencer operation with a voter module fault.72
Figure 50. Synopsys Synplify Premier with Design Planner main interface screen

example. ...73
Figure 51. Synplify’s TMR feature applied to an output, showing software generated

FF’s and majority voter. ...74
Figure 52. Design results of automatic TMR applied to state output bus only.75
Figure 53. Design result of TMR applied to top level sequencer module.........................76
Figure 54. Detailed view of software TMR on the memory and next state logic

interface..77
Figure 55. Software TMR simulation with no inserted faults. ..78
Figure 56. Software TMR timer fault insertion schematic showing fault location.78
Figure 57. Software TMR sequencer operation with a fault in the timeout signal.79
Figure 58. Software TMR sequencer operation with a fault in the P-POD select

signal. ...79
Figure 59. Software TMR sequencer operation with faults in the state output MSB

and LSB. ..80
Figure 60. Software TMR sequencer operation with a fault in the second layer state

voter circuit. ...81
Figure 61. Conversion of a majority voter logic gate design into a LUT

implementation using a three-input LUT. ..84
Figure 62. RTL schematic produced following synthesis of a timer module in the

sequencer design. ...85
Figure 63. View of a Xilinx FPGA place and route map for the sequencer design.86
Figure 64. Manual TMR sequencer final place and route showing <1% resource

usage. ...88
Figure 65. TMR sequencer modules distributed widely across the entire FPGA

package. ...89

 xiii

Figure 66. Microsemi ARM Cortex-M1-Enabled ProASIC3L Development Kit.92
Figure 67. Digilent Genesys development board with Xilinx Virtex-5 FPGA.93
Figure 68. A demonstration of the sequencer operating on the Genesys test board.95

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Comparison of mass and charge between radiation particles encountered
on orbit. ..11

Table 2. Comparison of FPGA switch technologies (from [25])22
Table 3. Selected state encoding. ...48
Table 4. Sequencer state encoding with decimal state values.63
Table 5. FPGA Resources used for three different sequencer designs87
Table 6. Timing comparison for fault tolerant sequencer designs.90
Table 7. Available P-POD delay times with various operating frequencies91

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

3D three dimensional

AMU atomic mass unit

ASIC application-specific integrated circuit

BGA ball grid array

BTMR block TMR

CAD computer-aided drafting

CAM computer-aided manufacturing

CCC clock conditioning circuit

CFTP Configurable Fault-Tolerant Processor

CLB configurable logic block

CMOS complimentary metal-oxide semiconductor

COTS commercial off-the-shelf

CPLD complex programmable logic device

CPU central processing unit

CS compton scattering

DC direct current

DIP dual-inline package

DSP digital signal processing

DTMR distributed TMR

EAR Export Administration Regulation

EEPROM electrically erasable PROM

EHP electron-hole-pair

EMI electromagnetic interference

FF flip-flop

FPD field programmable device

FPGA Field Programmable Gate Array

FROM flash ROM

FSM finite-state machine

GHz gigahertz

GND ground

 xviii

GTMR global TMR

HDL hardware description language

I/O input/output

IC integrated circuit

IEEE Institute of Electrical and Electronics Engineers

IP intellectual property

ISE Integrated Software Environment

ISim ISE Simulator

ITAR International Traffic in Arms Regulations

JTAG Joint Test Action Group

LED light-emitting diode

LFSR linear feedback shift register

LSB least significant bit

LT lieutenant

LTMR local TMR

LUT lookup table

LVDS low-voltage differential signaling

MBU multiple bit upset

MOSFET metal oxide semiconductor field effect transistor

MSB most significant bit

NASA National Aeronautics and Space Administration

NPS Naval Postgraduate School

NPSCuL NPS CubeSat Launcher

OTA over-the-air

P&R place and route

PA3TB ProASIC3 Test Board

PAL programmable array logic

PCB printed circuit board

PLA programmable logic array

PLD programmable logic device

PLL phase-locked loop

PP pair production

 xix

PPE photo-electric effect

P-POD Poly-Picosatellite Orbital Deployer

PROM programmable read-only memory

PSRR power supply rejection ratio

QFDR quadruple force decide redundancy

Rad-Hard radiation hardened

RAM random-access memory

RHBD radiation hardening by design

RTL register-transfer level

RTOS real-time operating system

SAD splitter auxiliary device

SADv3 SAD Version 3—Flight Prototype Board

SBU single bit upset

SDK software development kit

SDRAM synchronous dynamic random-access memory

SEB single-event burnout

SECDED single error correct, double error detect

SEE single-event effect

SEFI single-event function interrupt

SEL single-event latchup

SET single-event transient

SEU single event upset

SMT surface-mount technology

SoC system on chip

SOI silicon on insulator

SOS silicon on sapphire

SRAM static random-access memory

TID total ionizing dose

TIR triplicated interwoven redundancy

TMR triple modular redundancy

TSOP thin small-outline package

TTL transistor-transistor logic

 xx

USB universal serial bus

VCC positive voltage source

VDC volt(s) direct current

VHDL VHSIC hardware description language

VHSIC very-high-speed integrated circuits

VLSI very-large-scale integration

VQFP very thin quad flat package

XST Xilinx Synthesis Tool

 xxi

EXECUTIVE SUMMARY

The purpose of this research was to detail the design of a control system to deploy

CubeSats from the Naval Postgraduate School CubeSat Launcher (NPSCuL). This

design was developed as a minimal design with no inherent redundancy and then

expanded to redundant versions with various types of fault tolerance. Comparisons in the

operation between these versions as well as the required hardware resources to handle the

additional components were performed.

Figure 1 NPSCuL 3D model, showing eight P-PODs and the attached electronics

enclosure.

The NPSCuL is a cube-shaped structure, about 20 inches per side. It is designed

to be mounted on the aft end of an Atlas V Centaur launch vehicle. It holds eight poly-

picosatellite orbital deployers (P-PODS), and each P-POD can hold up to three small

cube satellites, each about four inches per side. A three-dimensional (3D) model of the

NPSCuL can be seen in Figure 1. When the host spacecraft reaches the desired orbit, the

P-POD doors are opened, and the picosatellites are deployed by a spring deployment

mechanism. The NPSCuL either controls the deployment sequence via an onboard

control system, known as the sequencer, or the deployment is controlled by the launch

vehicle’s flight computer. The sequencer logic is programmed into a field programmable

 xxii

gate array (FPGA). This design choice allows a reduced cost over a custom application

specific integrated circuit (ASIC) and allows for design flexibility as capabilities are

changed or added in the future.

The environment of space produces a complex and varied radiation environment.

Objects in space are bombarded by high energy gamma rays, streams of protons,

neutrons, and electrons. Impacts from alpha particles and heavier elements are

continuously occurring. Any spacecraft must be able to handle these conditions in order

to operate reliably. While many materials are largely unaffected by these conditions,

electronics can experience significant detrimental effects. The energy generated by each

impact in the silicon of the transistors are known as single-event effects (SEEs). These

effects can cause a transient pulse, called a single-event transient (SET), or even cause

permanent damage to the device in the form of a burnout or gate rupture. The SEE of

most concern here is the single-event upset (SEU), where an SEE causes a bit flip in a

register or memory location from a one to a zero or vice versa. An SEU in an operating

device such as a spacecraft control system can have disastrous results and lead to mission

failure or even loss of the spacecraft.

To protect against SEUs and other SEEs, the electronics manufacturing industry

has developed two primary methods. One involves designing their devices with different

materials and methods that are more resistant to radiation effects. This includes

manufacturing techniques such as silicon on insulator or silicon on sapphire, where extra

insulation material is incorporated into the semiconductor, increasing the energy

threshold required to cause an SEU. These design changes are effective but can be very

costly. The second protection method adds redundancy or error detection and correction

methods to the designs themselves. Using multiple devices or multiple segments of logic

on the same device ensures that a single radiation event does not affect the entire system,

and the remaining unaffected units can continue to operate correctly. This redundancy

can take the form of quadded logic, quadruple force decide redundancy (QFDR), triple

interwoven redundancy (TIR), or the triple modular redundancy (TMR). Other error

correction and detection schemes such as error correcting codes (ECC) and reduced

 xxiii

precision redundancy (RPR) are also used in some devices. Due to their reconfigurable

nature, FPGAs are susceptible to SEEs in their normal operation as well as their

configuration memory.

The NPSCuL will be operating in this environment once launched, and its

electronics must be able to handle these conditions. Prior flights of the NPSCuL have

used the launch vehicle to control deployments. Future flights are expected to use the

onboard sequencer. The sequencer design presented here should meet the mission

requirements, provide sufficient fault tolerance to operate reliably on orbit, and provide

flexibility for future operations.

To begin the design of the sequencer, the operational, mechanical, and electrical

requirements for the system were obtained from the various design documents. These

include operating voltages, time delay requirements, interfaces, and mechanical

clearances. From these requirements, a functional flowchart was generated, and a finite

state machine was developed. The design was created with separate modules, which

allows more flexibility for future design changes and improvements, as seen in Figure 2.

Additional supporting hardware was also designed, specifically a radiation hardened

launch command voter device, which serves as a final launch command decision to

eliminate faults caused by an SEU in the FPGA outputs.

Figure 2 Block diagram for the single-sequencer design.

To properly test this sequencer design, it first had to be implemented in software.

After a brief review of appropriate languages and development environments, the design

 xxiv

was created in Verilog, a hardware description language. With its flexible and powerful

simulation tools, the Xilinx Integrated Software Environment (ISE1) was chosen as the

development environment. Selecting the appropriate testing methods and techniques was

critical to verify proper operation of the fault tolerant features of the sequencer. A list of

potential errors was developed that encompassed the most likely SEE errors that would

be seen on orbit. These included errors such as bit-flips, stuck-at-one or zero errors, and

floating inputs and outputs. A small fault module was created and used to insert these

various fault types into the design. An analysis of the most significant error locations was

performed, and the fault modules were inserted into those locations.

Fault performance testing was performed on the single sequencer design first with

no included redundancy. This establishes a baseline of performance and demonstrates

the types of errors that are expected in a non-fault tolerant design. Two separate fault-

tolerant design versions were then created. The first using a distributed TMR method

done manually, as shown in Figure 3. The second used the automatic TMR features of a

software program by Synopsys called Synplify2. These two versions were tested against

the same fault sequence as the initial design version. In every case, the manual TMR

version was able to correct the faults before the output was affected, proving the

effectiveness of the TMR concept. The software designed version was effective with

some errors, but not all. The software-assisted TMR design was considerably quicker to

create than the manual TMR design, taking only a few seconds to complete. The final

result was lacking in fault tolerance compared to the manual design, however, and

consumed nearly the same degree of FPGA resources. For simple designs, manual TMR

has an advantage. As complexity increases, the designer may need make a decision

between the man-hour cost of development and the level of fault tolerance provided.

1 ISE® is a registered trademark of Xilinx
2 Synplify® is a registered trademark of Synopsys, Inc.

 xxv

Figure 3 Block diagram for manual distributed TMR sequencer design, showing

triplicated logic and voter locations.

Following this development, the software design was translated onto physical

FPGA hardware. An FPGA hardware prototyping and development board was selected,

the Genesys3 board by Digilent. This board provided a good mix of light emitting diodes

(LEDs) for indications and on-board switches and pushbuttons to properly provide input

to the system. A comparison of the required hardware resources demonstrated that the

TMR version does require significantly more resources than the single version. While

this is not a major factor in this example, it is a concern for anyone designing a more

complex or resource intensive project.

Testing demonstrated that the manual TMR version of this design is resistant to

all the error conditions applied. The software-assisted TMR design was good but still did

not protect against some of the SEE-induced faults that the manual TMR did, despite the

similar level of resources consumed.

Further research is needed to determine the effect of an actual radiation field on

the sequencer design, to compare other radiation tolerant logic methods, such as

3 Genesys® is a trademark of Digilent, Inc.

 xxvi

intelligent place-and-route, and to explore future capabilities and uses of the FPGA

design on the NPSCuL. The goals of this project were met, with a successful design of a

SEE-resistant sequencer suitable for operation on the NPSCuL.

 xxvii

ACKNOWLEDGMENTS

I would like to first thank my wife, Kate for her support and encouragement.

Despite the long hours and countless weekends of work, she has always stood by me and

helped me to achieve this life-long goal. Second I would like to thank my daughter,

Isabelle, for always cheering me up after a long day, and providing artwork and gifts for

my workspace.

Special thanks are also offered to the following people:

To Dr. Hersch Loomis for his guidance, advice and support, and Dr. Jim Newman

for his input and perspective.

To my classmates in Space Systems Engineering, Adam Sears, Sarah Bergman,

Henry “Longley” Thomason, and Greg Contreras for providing entertainment,

conversation, and lunchtime chatter within the “circle of trust.”

And finally, to my daughter’s pet fish, Spinester, for cleaning the fish tank walls

of algae, lighting my tank-cleaning workload.

 xxviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. PURPOSE

The purpose of this research is to compare manual and automated means of

creating reliable sequential logic designs using fault-tolerant methods. While manual

methods are proven, they can be very time consuming to develop and test. Automated

means via new commercial software packages are available and have the potential to

generate significant cost and time savings. The eventual goal of this research is to

produce logic designs that can operate reliably in high radiation space environments

using lower cost military or commercial aeronautical grade hardware rather than

expensive radiation-hardened (rad-hard) devices.

In order to achieve high reliability against the types of radiation-induced faults

that are encountered in an operating environment, several different methods are typically

employed. A device that suffers permanent damage after a short time in a radiation

environment is obviously unsuitable. On the other extreme, radiation hardening of the

hardware itself through design or shielding is cost and weight prohibitive in this

application. For any operation in space, some level of radiation resistance or tolerance is

required. Fault tolerance via logic design methods, such as triple modular redundancy

(TMR) or quadded logic, are well-known methods but labor intensive. Even for simple

sequential machines, the overall complexity increases exponentially. As a result, these

methods are not frequently employed for anything but the simplest of logic designs. New

software packages, such as Precision1 Synthesis RTL Plus by Mentor Graphics,

TMRTool2 by Xilinx and Synplify3 Premiere by Synopsys, enable a designer to apply

these high-reliability techniques with software tools. This makes much more complex

designs, up to full reduced instruction set-type CPUs or system-on-a-chip (SoCs) devices,

a possibility.

1 Precision® is a registered trademark of Mentor Graphics Corporation
2 TMRTool® is a registered trademark of Xilinx, Inc.
3 Synplify® is a registered trademark of Synopsys, Inc

 2

While this research can be applied to any general sequential or combinational

logic machine, the specific application is for a launch sequencer for the Naval

Postgraduate School (NPS) CubeSat Launcher known as NPSCuL [1]. This platform is

an excellent fit for this type of design due to the complexity of the design, the

requirements for operation, and the association with NPS. A primary driver of most

CubeSat programs is lower costs and the use of commercial field programmable gate

arrays (FPGAs) to achieve levels of reliability comparable to rad-hard devices would be

highly desirable. The same concepts apply to the launch platform for the CubeSats,

where a launch sequencer must be highly reliable, reconfigurable, and low cost. Current

commercial products that meet the design goals are far too costly to be realistically

considered.

NPSCuL offers an excellent platform to begin to expand these concepts to

physical hardware in a real operating environment. The sequencer has a limited number

of inputs and outputs and must simply execute a timed launch sequence for the installed

CubeSats when initially powered on. The actual sequence and timing for each launch is

programmable on the ground prior to launch. No outside commands into the system are

provided; the sequence starts automatically when the system is powered. The outputs are

the individual P-POD launch commands and status reports for each launch. This design

is developed to easily integrate with the existing hardware and requirements developed in

previous work on this launcher. In particular, the design created in this thesis must work

with the FPGA and printed circuit board (PCB) designs that have already been developed

for the NPSCuL [2].

B. PREVIOUS WORK

The NPSCuL sequencer and supporting hardware, software and components have

been developed by a number of students over the course of the program’s history. Each

person’s work has been useful to develop the concepts and technology to allow the

program to reach its current status. The key portions of this work relevant to this thesis

are listed here.

 3

1. NPS Configurable Fault-Tolerant Processor Project

The Configurable Fault-Tolerant Processor (CFTP) project [3], [4], [5], [6] was a

cornerstone of the research by NPS on radiation effects on FPGAs. This project was

worked on by multiple students and staff over several years of research. The project

mainly focused on considerably more complex logic designs, up to and including

complete general processor units. The individuals working on these projects developed

an excellent knowledge base of information for implementing fault-tolerant designs in

hardware and were able to perform some testing in an actual radiation field. Since much

of the CFTP data was obtained using older generation FPGA hardware, the results with

newer generation hardware can be expected to change. In addition, the reduced

complexity of the sequencer design and the robustness of NPSCuL interfaces should lead

to fewer expected faults.

2. Parobek’s Hardware

Lieutenant (LT) Luke Parobek developed a test board known as the “ProASIC3

Test Board” [2] for testing of a proposed sequencer implementation. This small PCB

incorporated a commercial FPGA from Actel and serves as a test bed and a preliminary

prototype for future development of a flight-ready sequencer. In addition, the details for

the interface of this sequencer with existing NPSCuL electronics was developed to allow

future integration. This hardware is robust and flexible and is essential for initial

verification and testing of various logic designs.

Figure 1. ProASIC3 test board (from [2])

 4

3. Majewicz’s TMR Research

LT Peter Majewicz performed significant research into the implementation

of TMR logic designs [7]. While his work involved significantly more complex designs

than this thesis, the overall concepts are still very relevant for this work. In particular, he

was able to perform actual radiation testing at the University of California-Davis’

cyclotron. This data can be used to estimate performance of future logic designs that use

his methods.

C. NPSCUL AND SEQUENCER HISTORY

1. NPS Cube Sat Launcher

A CubeSat is a class of satellite known as a nanosatellite, with a mass between

one and 10 kilograms. These small satellites are currently used for space research by

academic and commercial groups [8]. The smallest of these devices is a “1U” size,

which is defined as a cube 10 cm on each side [9]. A 2U or 3U size shares the same base

as a 1U size but either doubles or triples, respectively, in height.

Figure 2. Typical 1U CubeSat (from [8])

 5

NPSCuL is a CubeSat launcher, developed by NPS and funded by the National

Reconnaissance Office (NRO), as shown in Figure 3. This relatively small package is

designed to fit within a small volume, mounted as a secondary payload. The launcher

consists of an aluminum framework and base and a minimal amount of supporting

electronics. The framework supports eight poly-picosatellite orbital deployers (P-PODS),

each of which is capable of deploying up to three 1U CubeSats or combinations of 1U,

2U or a single 3U CubeSat. The base is compatible with an evolved expendable launch

vehicle (EELV) secondary payload adapter (ESPA), which allows mounting to a variety

of primary payloads for delivery to orbit. The electrical interface with the host is limited

to some number of power and data signals. In one possible configuration, the launch

vehicle provides all the required electrical power and door switch data lines. In this case,

the host controls the launch sequence and timing for each P-POD and each P-POD’s door

status is directly available back to the launch vehicle. In another possible configuration,

only primary and secondary power and a single data line are provided by the host. In this

configuration, the sequencer is necessary to launch the P-PODs and monitor the status of

each P-POD door position [1].

Figure 3. NPSCuL 3D model, showing P-PODs mounted inside frame and attached

sequencer and control electronics enclosure (from [10])

 6

2. NPSCuL Sequencer

The sequencer has several unique requirements that led to the selection of an

FPGA based control system. In particular, the design must be programmable and

reconfigurable for future missions and requirements. The P-POD launch order and

timing between each launch can be changed at any time prior to launch while physical

access to the NPSCuL is still possible. The sequencer must also fit within the existing

physical volume of the NPSCuL electronics structure, as depicted by the yellow box in

Figure 3, as well as interface electrically with the current hardware without major

modifications. The operation of the launcher when under the control of the sequencer

must be identical to operation under the control of the primary spacecraft. The sequencer

will be exposed to the same radiation environment as the primary spacecraft, and must

operate without radiation induced errors under these conditions. The ability to

reconfigure the control system via an FPGA design is the key factor in this system due to

the flexibility that it provides to the engineers to meet changing requirements and

implement new features and capabilities without necessarily requiring an extensive

redesign or expensive testing of the hardware.

D. THESIS ORGANIZATION

This thesis is divided into six chapters. The first chapter presented the purpose of

this work, previous related work completed here at NPS, and the history of the NPSCuL

and the associated sequencer. In the second chapter, background information on the

radiation environment encountered by spacecraft on orbit is discussed. A basic overview

of the effects of radiation on semiconductor electronics is also explained, as well as the

efforts by engineers to mitigate those effects through new hardware designs, and finishes

with a brief review of the most common types of logical fault tolerance. The third

chapter begins with an explanation of the NPSCuL sequencer’s operational requirements

and design decisions and then proceeds to detail the process used to generate a design

from those requirements. The concept, methods, and results of testing for the sequencer

design are contained in Chapter IV. The basic sequencer’s functionality is verified and

compared to that of the chosen fault tolerant methods in this chapter. Translating these

 7

designs into a physical form on hardware devices is detailed in Chapter V, and a

comparison of the required resources for each design is made. Final conclusions and

recommendations for future work and continued development can be found in Chapter

VI. The final pages contain the appendices, which contain the source code and relevant

schematics generated during the course of this research.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. FAULT TOLERANCE

The nature of space flight puts very strict requirements on any spacecraft and its

associated components. After these systems are built and tested, they must survive harsh

launch conditions and the transition to vacuum and space. Then they must power on

independently, establish control of themselves and establish communications with the

ground. Once on-orbit, the hardware systems must operate reliably for their mission life,

usually with no possibility of repairs or maintenance. Few other highly complex systems

must meet these requirements. The occurrence of electronic faults and how those faults

are handled is, therefore, a very important area of discussion within the space community.

Electronic devices operating in space are subject to an extremely harsh operating

environment. Space qualified components typically operate in a vacuum, experience

extreme temperature variations while operating, undergo heavy vibration and shock

during launch, and function in widely varying radiation conditions. Most consumer

electronics cannot survive these conditions. Even more expensive industrial and

aerospace-specific parts may not be able to function in these conditions. In response to

the challenges, electronics manufactures have developed very specific parts. While these

parts are often engineering marvels, they come with a very high price tag. In particular,

the radiation hardened devices command a premium price, orders of magnitude greater

than commercial-off-the-shelf (COTS) aerospace devices. Temperature, atmospherics,

and vibration are a concern for almost all industrial electronics; however, the impact and

effects from a radiation environment is fairly unique to spacecraft and submarines and

serves as the focus of this thesis.

A. RADIATION ENVIRONMENT AND EFFECTS

1. Radiation Environment on Orbit

The sun produces radiation at all energy levels. A fairly constant source is

emitted by the solar wind. The sun also produces random solar flares and coronal mass

ejections (CMEs), which can produce shorter term but much higher intensity bursts of

energy. The complex magnetic fields of the Earth can be seen along with some typical

 10

satellite orbits in Figure 4. These fields trap, concentrate and accelerate radiation

particles and are still not well understood by NASA. Some radiation particles even arrive

from other stars in deep space. These particles can be categorized into several types and

energy levels.

Figure 4. The Van Allen radiation belts around the Earth are being studied and

characterized by NASA (from [11])

High energy electrons are usually generated by the magnetic fields of the Earth’s

Van Allen belts. These belts of magnetic force accelerate lower energy electrons to much

higher energy states. Electrons are also found in the solar wind, solar flares, and CME

material. Similar to electrons, protons are produced by the same sources. Due to their

higher mass, they can produce more damaging effects for the same particle velocity.

Heavy elements, primarily produced by solar flare events, can do a great deal of

damage to electronics and generate second and third order events due to their high

velocity, high electrostatic charge, and their high mass. The mass of individual particles,

 11

the energy, and the concentration can vary wildly in a short time. Radiation from sources

outside our solar system, known as cosmic radiation, is also a significant source of heavy

ions. This name can be a misnomer, as it does cover nearly any radiation heavier than an

alpha particle and not just heavy metals.

Gamma rays, neutrons, and other particles of varying energy and density also

exist in the space environment and must be considered. Even the structural materials of

the spacecraft can become irradiated over time and emit radiation. A comparison of the

relative strength of the incident particles and energy can be seen in Table 1.

Table 1. Comparison of mass and charge between radiation particles encountered on
orbit.

Particle Type Mass (in amu) Charge (in e)
Electrons 5.48x10-4 -1
Protons 1 1
Neutrons 1 0
Alpha 4 +2
Heavy Element Typically >4 Typically >+2
Gamma Ray 0 0

While operating on earth, the majority of this radiation is blocked by the Earth’s

magnetic field and atmosphere. Once any spacecraft is launched, however, it loses the

shielding of the atmosphere and must deal with these new surroundings. The structure of

a spacecraft and the protective covers of the equipment boxes provide shielding from the

majority of the low-energy radiation electronic components encounter. Higher energy

gamma rays and particles still penetrate these materials, and significant levels of

shielding are impractical for spaceflight due to the mass constraints for launch. Even

with modern field-programmable gate array (FPGA) and application specific integrated

circuit (ASIC) devices, the very compounds that form their packing contain trace

amounts of radioactive elements and can emit alpha particles as they decay. Since the

radiation environment is impossible to avoid, the sensitive electronic components must be

designed to handle these conditions.

 12

2. Radiation Interactions with Electronic Materials

To determine the effects radiation has on a specific electronic component, it is

necessary to first define some terms and concepts. The term “fluence” is defined as the

number of particles passing through a given area and is expressed in particles/cm2.

When fluence is measured over a given time, the term is given as flux and is expressed in

particles/cm2-sec. To determine the total radiation that a material has absorbed, the unit

of rad (radiation absorbed dose) is used, and it is defined as 100 ergs per gram of energy

absorbed by the given material. The amount of energy that is actually absorbed is

dependent on the type of radiation as well as the material in question, so it is frequently

annotated as such. For silicon, it is noted as rad(Si)

The effects of radiation on any complex electronic devices can be divided into

two potential categories, regardless of radiation source. One category is ionizing effects,

which primarily occur from photon radiation, and the second is displacement effects,

which usually occur from charged particle or neutron radiation. With the uncertain

nature of nuclear and radiological interactions, there is no way to guarantee or predict

exactly when or how an interaction will occur. It depends heavily on the material

involved, the type and intensity of the radiation, and the energy levels. Effects are,

therefore, generally described with a probability of occurring in a given situation.

Figure 5. Effects of an ionization event on a transistor inside a typical FPGA (from

[12])

 13

Ionization effects on materials can be broken down into three possible effects,

Compton scattering (CS), pair production (PP), and the photoelectric effect (PE). The

photoelectric effect occurs when a high energy radiation photon is absorbed by an

incident atom in the material, the atom responds by emitting an electron in a random

direction and the nucleus recoils with an equivalent momentum. This electron can go on

to cause other interactions. This primarily occurs with lower-energy photons. As photon

energy increases the Compton scattering effect is more likely, where the incident photon

transfers some of it energy to motion of the target electron, the photon is then re-emitted

at a lower energy and can go on to cause other interactions. At the highest levels of

incident photon energy (>1.02 MeV), pair production reaction can occur. In this situation

the incident photon interacts with a heavier nucleus and produces an electron and

positron with equal but opposite momentum. These two particles then usually go on to

produce secondary interactions. These effects are probabilistic; a very high energy

photon may cause any one of the three effects. A photon must have a certain threshold

energy to cause Compton scattering and must have a minimum of 1.02 MeV to cause pair

production. An example of these probabilities, comparing the atomic mass of the target

nucleus to the incoming gamma energy, is shown in Figure 6.

Figure 6. Illustration of gamma ray interactions with various types of material. Areas of

dominant interaction types are indicated (from [13])

 14

Total ionizing dose (TID) is a measure of the accumulated damage due to ionizing

events, measured in rads, occurring within a device or component. In metal oxide

semiconductor (MOS) devices, this damage ordinarily takes the form of a buildup of

trapped charge within the thin oxide layers of a device [14]. As an ionizing event occurs

in the silicon oxide (SiO2) layer, it generates a trail of electron/hole pairs (EHPs). The

freed electrons are highly mobile and quickly, on the order of picoseconds, migrate away

based on the existing electric fields in the area. The holes left behind move in the

opposite direction but migrate much more slowly by swapping electrons with nearby

atoms. This process causes an immediate shift in the threshold voltage of the device.

Depending on device temperature, it can take seconds for equilibrium to be restored. As

they migrate through the material, some of these holes become trapped at the SiO2/Si

interfaces, and this leads to a permanent voltage shift in the device. The energy of the

incident radiation affects the number of EHPs formed, and the electric field strength

affects their ability to recombine, as shown in Figure 7. The more EHPs that escape

immediate recombination, the greater the overall damage to the device

Figure 7. Effects of the electric field strength and the incident radiation intensity on

recombination of EHPs (from [15])

 15

Displacement effects are generally caused by two effects, either Rutherford

scattering or direct nuclear interactions. In the case of Rutherford scattering, an incoming

charged particle undergoes an electrostatic interaction with the target atom. This can lead

to an ionization effect, or a displacement effect, where the target atom is physically

moved from its location in the crystal lattice. The primary means of energy exchange are

via the electrostatic fields of the particles and not physical absorption. If contact does

occur, for example an inelastic collision between a neutron from the radiation field and a

silicon nucleus in the electronic device, then a nuclear interaction has occurred. This

impact can also displace atom from their location in the crystal lattice, and this movement

often causes secondary interactions. Other nuclear events, such as a protons being

absorbed by material nuclei and subsequently producing more alpha particles when they

decay, are also considered displacement effects.

Is it important to note that these events and their causes are closely intertwined,

and the secondary effects produced can be significant. A single interaction that generates

a displacement event may produce several secondary displacement events before the

energy is dissipated. Each of those secondary events may produce other ionizing events.

Similarly, a high-energy ionizing event may also cause secondary displacement effects or

ionizing events. In addition, if these effects occur in a semiconductor device with a

current applied, the electric field generated can impact the path and final disposition of

the resulting particles. This last interaction and the permanent damage caused by

displacement effects are what generate the undesired effects inside semiconductor

devices.

3. Radiation Effects on Electronic Component Operation

Exactly how these various events affect the operation of the device itself depends

largely on the construction of the device, exactly where on the device the event occurs,

the energy released by the event, and the state of the device at the time of impact. If the

event produces a measureable effect, it can be considered a single event effect (SEE).

Physically, these effects take the form of current or voltage spikes within the device. Soft

errors are seen as temporary transients that can be corrected by resetting or cycling the

 16

power to the device. Hard errors occur when the SEE causes permanent damage to some

portion of the FPGA. As we cannot readily measure the voltage or current at every point

inside an operating FPGA, we can only classify these events as they relate to the

operational logic of the device. These operational errors can be tracked and further

broken down based on the type of effect they have on the FPGA.

Figure 8. Types of non-recoverable single-event effects. (from [16])

The susceptibility of a device to hard errors is of significant importance in this

discussion. If the FPGA suffers permanent damage quickly in the operating environment,

then it becomes useless in short order, regardless of any fault-tolerant logic designs. The

three major types of hard errors include the single-event latch-up (SEL), where a SEE

causes a transistor within the device to become “stuck” in a particular state, the single-

event burnout (SEB), which applies mainly to power metal–oxide–semiconductor field-

effect transistors (MOSFETs) and results in a permanently forward-biased transistor, and

the single-event gate rupture (SEGR), a rupture of the gate’s oxide insulation, which

generally occurs only with high energy SEEs.

 17

Figure 9. Types of recoverable single-event effects (from [16])

Soft, or recoverable errors, are much more common than hard errors and are seen

in almost all FPGA or ASICs. These generally fall into one of two major categories:

single-event transients (SETs) and single-event upsets (SEUs). An SET occurs when an

SEE causes a voltage or current transient in the FPGA. If this occurs at the wrong time,

for example on a clock edge where the logic is currently checking for a value, then an

erroneous signal may be propagated into the logic function. An SEU is more specific,

and occurs when the SEE causes a “bit flip” in the FPGA. A flip-flop, memory element

or latch within the FPGA must be changed from zero to one or vice versa by the SEE to

be classified as an SEU. If multiple bits within the FPGA are impacted by the SEE, this

is classified as a multi-bit upset (MBU).

A third category, the single-event function interrupt (SEFI), is sometimes used to

describe a major disruption to the FPGA that requires reconfiguration or power cycling to

restore operation. A SEFI usually occurs in the configuration or support sections of the

FPGA, such as the configuration memory or the JTAG interface [12].

 18

Figure 10. Simulation of a single-event transient occurring on a clock edge (in red),

causing a missed transition of a flip-flip (in blue) (from [17])

The radiation conditions that satellites must operate in are quite varied in the type

and relative strength of the flux encountered. Every satellite sees wide ranges of

conditions from cosmic rays, solar storms and sun spots, and variations in the earth’s

magnetic belts. For any FPGA operating under these conditions, it is not a question of if

these SEEs cause errors, but how frequently these errors will occur. Some design

features and methods can reduce the probability of errors, and other features try to limit

the effects of the errors. In any case, the errors will occur and must be properly

accounted for in the overall design.

B. FAULT TOLERANCE BY RADIATION HARDENING

Reducing the radiation induced error rate in FPGAs and ASICs is a priority for

semiconductor manufacturers. Several methods have been successfully employed, from

changing the composition of the base materials used in manufacturing to changing the

size and shape of features on the silicon. Each of these methods have costs in terms of

performance or capability of the device. Due to their more limited demand and more

complex manufacturing, these devices also come at a much higher dollar cost per unit.

FPGAs can also be more susceptible to radiation effects than ASICs. The internal

structure of an FPGA is reconfigurable, and this additional flexibility adds additional

locations and modes of failure as the reconfiguration matrix and memory can also be

affected.

 19

1. Silicon on Insulator and Silicon on Sapphire

Silicon-on-insulator (SOI) technology is a method of manufacturing

semiconductor devices using a layer of electrical insulation, typically silicon dioxide, to

separate the bulk silicon layers. This additional layer of material reduces the charge

collection volume of each transistor, makes the devices much more resistant to SEUs, and

immune to most types of SEL [18]. Much of the industry drive to improve this

technology is based on SOI’s lower parasitic capacitance, which improves power

consumption for handheld devices. As a result, many newer devices, such as the Xilinx

Virtex-5, use SOI in their standard products, providing an improvement in radiation

hardness for no additional cost. Silicon on sapphire (SOS) is similar to SOI but uses a

silicon film grown onto a sapphire (AL2O3) wafer. SOS devices are considerably more

resistant to radiation [19] but come with a much higher price tag and considerably fewer

options on the market.

Figure 11. Example comparing a bulk silicon transistor to Peregrine Semiconductor’s

UltraCMOS4 (SOS) process (from [20])

4 UltraCMOS is a registered trademark of Peregrine Semiconductor, Inc.

 20

2. FPGA Technology

The development of programmable logic devices (PLDs) began in the mid-1970s

as engineers looked for ways to overcome the significant non-recurring engineering

(NRE) costs of building an ASIC [21]. These devices were needed for two primary tasks.

One, provide a means of prototyping and testing a design before mass producing an

ASIC. The significant cost of creating a single ASIC made this a major cost saving step

for any project. The second task was to serve as operational hardware for small-scale

production. Even today it is not cost effective to make small quantities of custom ASIC

devices. This makes FPGA technology ideal for space applications, where frequently

only one or two vehicles are made the same. Early PLDs and FPGAs had low clock

speeds and a limited number of gates and interconnections. Modern FPGAs, such as the

Xilinx Virtex-7,5 offer over two million logic cells, 68 Mb of on-chip memory, and can

handle 2.9 Tb/sec of I/O via 1200 I/O pins [22]. This capability allows an engineer to put

the capabilities of entire computer systems into a single chip [23].

An FPGA consists of several components manufactured onto a common piece of

substrate material. This integrated circuit device is configurable via a series of

programmable switches connecting the internal logic blocks. An example of a typical

FPGA can be seen in Figure 12. Each of the configurable logic blocks (CLBs) contains a

series of lookup table (LUTs) and multiplexors (MUXs) that can be assembled and

programed per the user’s specifications [24]. Each CLB is interconnected via an

underlying matrix, and these matrix connections are also programmable to allow

connection between CLBs, input/output (I/O) pins on the FPGA package, and other

internal components such as memory and built-in clock devices. Each component is

susceptible to radiation and each exhibits different responses to SEEs. The

interconnection matrix itself can also be susceptible to SEEs and must be considered

during design. There are three common categories of FPGAs that are used in aerospace

5 Virtex® is a registered trademark of Xilinx, Inc.

 21

applications that are differentiated based on the methods used to program their

interconnection matrix. These types are anti-fuse, static random access memory (SRAM)

based, and flash based.

Figure 12. Typical FPGA internal structure (from [24])

a. Anti-fuse FPGAs

Anti-fuse FPGAs are named as such due to the nature of their internal

switch matrix. A regular fuse opens when a sufficiently high current is passed through it.

An “anti-fuse” circuit closes when a higher-than-normal current is passed through it.

Using a programming device, the desired internal switches are permanently fused closed

by high current pulses. The switch matrix in anti-fuse FPGA is one-time-programmable

(OTP). Once the FPGA design has been programmed, it cannot be changed. This design

method offers considerably less flexibility than other methods, but the anti-fuse FPGA

does offer a switch matrix that is largely immune to SEUs and TID effects [25]. The

CLBs and other internal structures are still susceptible to radiation effects. The one-time-

only aspect of this type of FPGA makes them less desirable in many space applications,

as they cannot be reconfigured to correct problems or take on new capabilities.

 22

Table 2. Comparison of FPGA switch technologies (from [25])

b. Flash Based FPGAs

Flash-based FPGAs use a switch matrix formed of floating gate

transistors. An internal circuit called a charge pump controls the current to each of these

switches. Their configuration is non-volatile and stored in a NAND or NOR-type

internal flash memory and thus is maintained during power cycling [26]. Flash-based

FPGAs can be reprogrammed multiple times while installed in the system. However, the

charge pumps are susceptible to TID effects and degrade over time in a radiation field.

Typical flash memory structures are NAND based, and these memory structures are also

sensitive to TID based damage [27].

c. SRAM Based FPGAs

The last type of FPGA considered here is the SRAM-based design.

Similar to the flash-based version, the configuration for this FPGA is stored in memory.

In this design, the configuration memory is stored in SRAM switches. A non-volatile

memory, either on or off-chip, holds the configuration bit stream until the device is

powered on. The internal switch matrix is typically a multiplexor controlled by the

configuration memory. This has the advantage of a larger number of possible

configurations as well as thousands of reprogramming cycles. The configuration memory

 23

itself is volatile, and the device must reprogram itself at power-on. SRAM based devices

are susceptible to SEUs in both the logic blocks and the configuration matrix.

Figure 13. Example of short and open SEUs in an FGPA switch matrix (from [28])

To increase their radiation resistance, manufacturers add redundancy and

logic design features to the SRAM memory of some of these devices. Xilinx for

example, offers a single-error correction, double-error detection (SECDED) capability for

the configuration memory that is built into the FPGA [29] for their Virtex-56 and newer

series of FPGAs. This capability allows the device to automatically correct any single-bit

memory error on boot and configuration and detect and report an error of two bits. These

additional logic features, combined with the radiation hardened physical structures, make

these “space grade” FPGAs extremely resistant to SEUs but also extremely expensive.

SRAM based FPGAs have additional circuitry requirements that can raise

the deployment cost of both the rad-hard and normal aerospace designs. These FPGAs

require secondary circuitry on the associated PCB to monitor for errors and provide a

means of power cycling to restore the base configuration in case of an error. Older

designs required even more external devices such as DRAM, voltage regulators, and

oscillators. Newer FPGA devices have all these features internal to device, reducing the

requirements. Despite these drawbacks, SRAM based FPGAs are still very popular due

to their extremely high feature density, flexibility, and high switching speed.

6 Virtex® is a registered trademark of Xilinx, Inc.

 24

C. FAULT TOLERANCE BY LOGIC DESIGN

There are a number of fault-tolerant methods that have been developed to improve

the reliability of computer systems and logic devices. These designs have been used any

time a very high reliability system is required, such as life-critical medical devices or

devices controlling nuclear reactor safety systems. The objective of these designs is to

ensure that no single fault can prevent the proper operation of the overall system. There

are many variations of redundancy logic fault tolerance, including triple-modular

redundancy (TMR), dual-modular redundancy (DMR), triple-interwoven logic (TIL), and

quadded logic. Fault tolerance can also be provided with reconfiguration based methods,

such as scrubbing [30]. Regardless of the specific method or combination of methods,

there are three basic goals they all share:

• No single point of failure can cause a system failure

• Faults can be isolated to the component that produced the error

• Faults are contained to prevent propagation

While every method improves the overall reliability of a given logic design, there

is a cost in terms of performance. A simple duplication design consumes more than twice

the FPGA resources than a non-redundant design. The more complex methods can

consume nearly four times the resources. This must be taken into consideration early in

the design process to ensure sufficient FPGA capacity is available.

1. Quadded Logic

One of the earliest forms of redundancy was proposed by a Bell Telephone

employee named J. G. Tyron in 1958 [31]. His concept, called “quadded logic,” took a

simple logic design and radically increased the fault tolerance by replacing every gate

with four similar gates, using a cross-connection scheme to interconnect each gate.

These cross-connects are critical to ensure fault tolerance. An example for a simple half-

adder is shown in Figure 14. This concept is resistant to SEUs, with errors being self-

corrected between stages. Just from this simple example, it is clear that the minimum

price for this type of fault tolerance is four times the FPGA resources.

 25

Figure 14. NOR-based half-adder (a) and quadded logic version (b) (from [32]).

2. Quadruple Force Decide Redundancy

Quadruple force decide redundancy (QFDR) is a modified version of quadded

logic with some minor variations. In particular QFDR can be applied to logic structures

more complex than simple gates. By using a “force decide” layer between logic sections,

it can detect when one of the four inputs is different from its neighbors and force an error

bit that is carried to the following layer, where the decide step selects the inputs from the

 26

non-error containing logic [30]. QFDR has the advantages of being scalable for logic

structures much larger than single gates but still incurs the high FPGA resource penalty

of quadded logic.

3. Triple-Modular Redundancy

Improvements in reliability of computers via an arrangement of redundant circuits

and voting was initially developed by J. Von Neumann in 1965. The output of a series of

three identical logic functions is sent to a voter circuit, which he called the “majority

organ” [33]. The voter compares the three inputs and provides an output based on a

majority function, as shown in Figure 15. The number of inputs to a voter is odd to

ensure that the result is unambiguous [34]. This basic design has a serious flaw, in that

an error in the voter circuit could result in an erroneous output signal. To account for this

issue, the voter circuitry itself is usually replicated as well, which can be seen in Figure

16. Even in this case, some final determination must be made to determine the majority

for the three outputs.

Figure 15. Basic concept for triple-modular redundancy

 27

Figure 16. TMR with triplicated voter circuits.

Use of TMR in an FPGA can take several forms based on the needs of the

designer. Block TMR (BTMR) is the simplest form and consists of a single voter circuit

for triplicated blocks of logic. This method is no different from the basic TMR methods

that have just been described, except the logic blocks may be fairly complex functions.

As the complexity of the blocks increase, this method becomes less useful for real world

application. Errors in more than one block simultaneously become more likely as the

block size increases, and with no feedback function to “reset” a block after an error, the

system may soon be corrupted [35].

Local TMR (LTMR) is an improvement on BTMR. In LTMR, a set of flip-flops

(FFs) are placed between the output of voter circuits and the next logic block. In this

case, the correctly voted value is sent to each FF in that layer. This method provides a

feedback feature and ensures that errors are not propagated past any given logic stage

[35], however, this method has drawbacks as well. In LTMR the individual clock and

reset/clear lines for the FFs are not triplicated and can cause potential errors if an SEU

occurs on one of those signals. In addition, the FFs themselves add additional complexity

and increase the sensitivity of the design to SETs.

 28

A further improvement in reliability was introduced in the form of global TMR

(GTMR). Similar to LTMR, the logic blocks are divided by FFs. In GTMR, however,

all the clock generators and other asynchronous inputs such as clear signals are

triplicated. This method has the greatest requirements for FPGA resources and

introduces new potential problems if the clocks between the modules are not properly

synchronized. The final method discussed here, distributed TMR (DTMR), attempts to

correct this problem by triplicating all the elements but uses a global clock and reset

signal [35]. Regardless of the specific TMR method used, there are significant

challenges in verification of the final FPGA design to ensure all critical elements are

properly triplicated.

4. Triplicated Interwoven Redundancy

Triple interwoven redundancy is another form of fault tolerance and is formed

from a combination of some quadded logic concepts with TMR. In this method, the

initial logic design is triplicated, and the resulting outputs are cross-connected in a similar

fashion to quadded logic. The design must first be broken down to a gate-level and

inputs and outputs classified as critical or subcritical based on the gate types. For

example, a stuck-at-zero fault is critical for a NAND gate but subcritical for a NOR gate.

Then the gates are interwoven at each state to ensure that a critical output is a subcritical

input for the next stage. Ideally, as the error progresses through the logic, it is eventually

“healed” and disappears. An example of the half-adder discussed earlier but produced

via a TIR method is seen in Figure 17. This method has proven to be comparable in

terms of fault tolerance to TMR methods [36].

 29

Figure 17. A NAND based half-adder with triple interwoven redundancy (from [36])

5. Error Correcting Codes and Reduced Precision Redundancy

Two other fault-tolerance methods used in digital logic systems are error

correcting codes (ECC) and reduced precision redundancy (RPR). In an ECC system,

such as a Hamming code, a mathematical algorithm is performed on a bit stream or

memory segment, such as a group of registers [37]. This method is used to detect and

correct single bit errors by adding redundant bits and setting allowed bit patterns. If the

actual pattern does not match one of the allowed patterns, it can be corrected by changing

the offending bit. Another fault protection method is known as reduced precision

redundancy (RPR). In an RPR system, two less-precise versions of the original circuit

are operated in parallel [38]. For example, if the original circuit was a 64-bit

 30

mathematical processor, an RPR version may be a much smaller 32 or 16-bit system.

The outputs of these three parallel processes are compared, and if an error in the precise

version is detected, the lower precision solution is used, giving a “good enough” solution

rather than an outright error. If the error is in one of the two lower-precision results, then

the precise result is deemed to be correct. This method can be employed internally to an

FPGA for arithmetic processing tasks but not for general logic [6]. In the case of the

NPSCuL sequencer, neither of these methods is appropriate. The sequencer has a very

limited memory storage, making ECC protection impractical. As the sequencer operates

only as a simple sequential machine, it has no complex processing, and as such, a reduced

precision version is not possible.

6. Configuration Scrubbing

Configuration scrubbing in an FPGA is performed when the configuration

memory is periodically refreshed with a “golden copy” of the memory. This resets the

device to a known-good state and clears any SEUs that may have occurred in the

configuration memory. In order to be effective, the configuration memory must be error-

free. Many manufacturers use ECC storage for the memory to provide SECDED features

for the memory itself [25]. The scrubbing can also be performed any time an error is

detected in the logic output, but this requires additional logic to detect the errors internal

to the logic design.

A complete scrub of an FPGA renders it inoperable until the scrub is completed.

The device must then be restarted and allowed to operate. In the case of mission-critical

systems, this necessitates multiple redundant FPGAs, driving up the cost of the system.

To avoid this, an alternate method termed “readback and compare” [39] is implemented.

In this method, the configuration memory is first read, then compared to the reference

copy. The re-write of the FPGA is then only required if an error is detected. Another

alternative is partial reconfiguration, where only certain sectors or portions of the FPGA

are reconfigured, leaving the other portions operating [40]. This method is complex and

requires very detailed planning during the place-and-route step of FPGA planning to

ensure the logic used is properly located.

 31

D. CHAPTER SUMMARY

In Chapter II, a general background of fault tolerance for FPGA devices and why

it is required was provided. The sequencer that is discussed in following chapters will

operate in a harsh radiation environment. While on orbit it will encounter radiation at

varying levels from every direction. Despite this, the sequencer must operate correctly

and any faults must not affect the overall operation.

When a semiconductor device, such as an FPGA, is operated in a radiation field,

there can be a wide range of potential effects. Soft and hard errors can be categorized,

and those can be further broken down into the various types of SEEs such as SEUs,

SELs, and SETs. Each type can have a detrimental effect on the routine operation of an

FPGA. Long-term exposure, in terms of the TID, must also be considered when

determining the performance of a particular device. Different manufacturing techniques

and materials can reduce these effects significantly.

Knowing that an FPGA will experience these events to some degree during

operation, we must discuss how to mitigate the effects. This is where the various forms

of logic come into play. Proper implementation of the different forms of TMR can make

a device nearly immune to SEEs. Combined with periodic and situational FPGA

scrubbing, this can make for a highly reliable device.

The technology and principles discussed here are critical to the development of

almost any electronic device destined for operation in a spacecraft. The mission of the

spacecraft determines the radiation conditions it encounters, and the performance

requirements and budget drives the parts selection. In very high radiation environments,

even rad-hard devices may experience SEUs. In low-cost applications such as NPSCuL,

selecting the largest and most radiation hardened silicon may not be an option. Proper

employment of the fault tolerant techniques discussed here is critical for proper operation

of designs like the NPSCuL sequencer that is discussed in detail in the next chapter.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

III. SEQUENCER DESIGN

A. SEQUENCER HISTORY

When the NPSCuL program was initiated, the engineers had two possible

concepts for control of P-POD door opening. The first option was opening via direct

control from the host spacecraft. This concept minimizes the need for additional

hardware and control in the NPSCuL system. The burden to monitor and control the

opening of each P-POD door could be handed off to the robust flight computer of the

launch vehicle [1]. While this concept is attractive for NPS, due to the reductions in cost,

local testing, and development, it comes at a cost to the launch vehicle. Relying on host

control shifts more of the testing burden to the owner of the host spacecraft. Given that

the host spacecraft typically operate under a program that is orders of magnitude larger

than the NPSCuL program, this may not be acceptable. Even if the host spacecraft’s

program did accept such a requirement, they would likely require a completed unit for

testing early in the testing cycle [41].

The second option for control of the P-POD doors is an independent control

system, contained entirely within the NPSCuL itself. This concept uses an on-board

controller, known as a sequencer, to control the sequence and timing of P-POD door

opening. The sequencer also handles any required telemetry data [41]. The sequencer

receives redundant electrical power from the launch vehicle. When powered on, it

commands the non-explosive actuators (NEAs) that actually open the P-POD doors,

deploying the CubeSat using a spring. A micro switch attached to each P-POD door

allows for monitoring of the door position by the sequencer or host spacecraft.

For the first flight planned for the NPSCuL system, the launch vehicle was unable

to provide all the required power and data lines, and an NPS-designed sequencer was not

going to be available within the expected flight delivery timeline. Therefore, a

commercial product, designed and built by Ecliptic Enterprises, was to be used for the

mission. This sequencer was designed for integration into an Atlas-V launch [42].

Ecliptic Enterprises worked with both NPS and ULA to ensure proper integration with

 34

the NPSCuL and the Atlas V’s Centaur upper stage avionics. The CubeSats selected for

the first flight were not ready on schedule and so the first NPSCuL flight was cancelled.

The sequencer is an essential piece of the entire NPSCuL system, serving as the

primary control system. If the sequencer fails to operate, the entire mission of the

NPSCuL fails, as none of the installed CubeSats are launched. If the P-PODs open

without sufficient delay between deployments, the CubeSats could collide. The NPSCuL

is an auxiliary payload on a larger mission. In a worst case scenario, a failure of

NPSCuL could endanger the primary mission spacecraft. This, above all other

requirements, must not be allowed to happen.

B. REQUIREMENTS

The design requirements for the sequencer discussed here are consolidated from a

variety of sources. Some requirements such as the specific dimensions allowed for the

hardware mounting are taken directly from NPSCuL design documents [43] [10]. Others

are drawn from datasheets of components selected as possible candidates for use in future

designs. Still other requirements were generated following discussion with Dr. James

Newman and Dr. Herschel Loomis during the course of design.

1. Operational Requirements

Operational requirements for the sequencer answer the basic question of “what

does it do”? These are the primary considerations for all other design questions. The

sequencer must meet the following requirements to meet the mission objectives of the

NPSCuL system:

• Provide a fully programmable launch sequence for eight P-PODs. The
sequence and timing of individual P-POD launches is reprogrammable.

• The delay between P-POD launches can be set from one second to one
hour in one second intervals.

• The launch sequence commences automatically at power on. A
programmable delay from power on to initial launch is provided but no
additional launch command is needed.

• No hold/pause feature is required. To halt the launch, the system must be
powered down.

 35

• The system must be fault tolerant. SEEs and other system faults must
neither cause an inadvertent launch nor prevent an expected launch.

• The launch sequence and timing can be reprogrammed at any time up to a
few hours prior to launch. Reconfiguration capability after launch is not
provided.

2. Electrical Interface Requirements

The sequencer designed for this application has three primary electrical interfaces.

Primary and redundant electrical power is supplied from the host spacecraft. Primary and

redundant power from the sequencer is supplied to each P-POD to actuate the door itself.

Finally, each P-POD has a door switch, which allows the sequencer to determine whether

the P-POD door is closed or open.

a. Power Supply

Typical host spacecraft operate using a 28 V DC electrical distribution

bus. The completed sequencer operates at this voltage. Specific peak and idle current

values are available until final hardware selection. An estimate of 8 A peak and 2 A idle

is used here with the following assumptions:

• A typical NEA draws 6 A when actuated (additional detail provided in
following sections)

• No more than 1 P-POD NEA are actuated at a time

• The internal power supply converts the incoming 28 VDC power to the
5.0 V, 3.3 V and other voltages required for the FPGA and host adapter.

• The power supply provides the necessary voltage regulation and adequate
thermal and electrical protection for the sequencer.

b. Non-Explosive Actuators

The electrical actuators for the P-POD doors consist of a small spring-

loaded arm held in position by a material with a low melting point. This material is

surrounded by an electrical heating element. When sufficient electrical current is

supplied, the material softens, and the spring actuates the arm. This arm then

mechanically unlatches the P-POD door. An example can be seen in Figure 18. These

 36

devices each have unique operating curves that delineate the time for actuation based on

the supplied current. For this operation, the maximum actuation time of 120 ms [1] is

used.

Figure 18. NEA model 9102G non-explosive release mechanism (from [1])

c. Door Position Detection

Two simple micro switches are mounted to the P-POD door mechanism.

The switches are connected such that when the P-POD door is closed, the circuit is

closed. When the P-POD door opens, the switch actuates and the circuit opens. This

switch is connected to a 3.3 V or 5.0 V power supply connection and simply provides a

binary signal regarding the position of the P-POD door [43]. While this signal is used to

indicate the successful door opening of a P-POD, it must be noted that there is no

onboard mechanism to determine if the CubeSat actually deployed properly. The

sequencer only has indications of door position. The purpose of the switches is to

validate that any given door does not open until it is commanded to do so. Although a

failure resulting in an open door, and therefore CubeSat deployment, prior to launch is

considered unrealistic, it is prudent to monitor the doors so that in the event of a launch

anomaly, the NPSCuL system can be exonerated or implicated, as appropriate.

 37

3. Mechanical Requirements

The final design for the sequencer must fit within the volume of the NPSCuL

splitter auxiliary device (SAD) enclosure. The launch vehicle for the second planned

flight of NPSCuL had sufficient resources to provide eight primary and redundant power

and eight data lines. Therefore, all that NPSCuL had to provide was a splitter auxiliary

device (SAD). The original version of the SAD is shown in Figure 19. This original

version provided a pass-through connection for power and control from the host

spacecraft’s flight computer to the individual P-PODs on the NPSCuL. This enclosure

mounts directly to the side of the NPSCuL structure. The second version of the SAD

incorporated a PCB mounted to the bottom to replace the wiring harness bundles and to

simplify the manufacturing of the harnesses.

Figure 19. NPSCuL splitter auxiliary device with wiring harnesses (from [2])

A newer version also incorporates a PCB to replace the wiring harnesses and

provides additional space to mount the FPGA, power supply, relays, and other electrical

components. The design for this PCB can be seen in Figure 20. This enclosure provides

external interface connectors for both primary and auxiliary power for the sequencer’s

power supply. These eight connections supply power to the NEAs and door position

switches. For the purposes of this thesis, the specifics of mechanical mounting, sizing,

 38

and issues such as thermal control are not discussed. This requirement is only used for

rough estimates of required PCB space for a proposed final design.

Figure 20. SAD with PCB design, showing mounting and connector location (from [2])

4. Performance Requirements

The initial performance requirements for the sequencer are fairly simple and easy

to accomplish. The device must operate quickly enough to execute the assigned launch

sequence. A typical launch sequence is set to allow two or three minutes between

launches. A launch command must be applied to the NEA for a minimum of 120 ms to

ensure a successful launch. As there are no limiting high-speed clocking requirements, a

design decision was made to select the lowest possible clock speed since SEUs have been

demonstrated to occur more frequently as clock speeds are increased [44]. Operating at

the lowest clock speed necessary to meet these requirements provides maximum

reliability.

C. SEQUENCER FLOW AND STATE MACHINE

The simplest method of meeting the operational requirements listed above is a

simple state machine using sequential logic. A method using a pre-existing design, such

 39

as the NPS configurable fault tolerant processor (CFTP) [3], was briefly considered but

would be significantly more complex than this application requires, and that complexity

brings along an increased susceptibility to SEUs.

1. Flowcharting the Design

The first step taken was to incorporate the operational requirements into a

flowchart for design. This flowchart is seen in Figure 21. A number of design decisions

were made at this point for the sequencer.

 40

Figure 21. Sequencer flow chart

The first decision was to make use of the P-POD door status signal. For the

purposes of testing, as well as possible future use in reporting telemetry to a ground

station or host system, a launch status is recorded for each P-POD launch. When a

launch command is issued to a given P-POD, the door status is checked continuously. If

the door is reported as “OPEN,” the launch is recorded as a success. If the door status

does not report “OPEN” within a set timeout period, then the door is assumed to be stuck

 41

or the NEA failed. In this case, the launch is recorded as failed. The available sensors on

the P-POD do not detect a failure where the door only opens partially, the CubeSat jams

on launch, or if the launching spring fails. In each of these failure cases, the sequencer

still records a successful launch.

The second important design decision is the use of a separate “memory” to store

the launch sequence and desired launch delays. To maximize the simplicity of the

system, this sequence and delays can be hard-coded into the final design and integrated

directly into the logic. This limits the complexity and makes the system that much more

resistant to logic failures; however, this conflicts with the desire to have an easily

reconfigurable design. A separate memory within the FPGA reduces the requirement to

re-perform significant levels of testing following a change in launch sequence.

2. Developing a State Machine

The next step was determination of what type of sequential machine to use for this

implementation. There are two varieties of state machine to consider for this application.

The Moore machine or the Mealy machine. In a Moore type machine, the output logic

function of the circuit depends only on the current state. In a Mealy machine, the output

logic function uses both the current state and the current input to determine an output. In

this sequencer design, the only external input is the P-POD door status. As this input

does not directly impact the output to the NEAs, a Moore machine was chosen.

The final selection entails eight states for the P-POD launch states and five states

to record success or failure, start the sequence, advance the sequence and a wait state.

With a total of 13 states, a four-bit state machine is required. With 16 possible states,

measures must be taken in design to ensure the unused states are compensated for to

prevent an unknown state condition. With this initial concept completed, development of

a useful software model could begin.

D. SOFTWARE DESIGN

Using the state machine developed, we created a series of functional blocks or modules.

The design goals at this stage in development were to create a series of modules that

 42

would meet the functional goals of the sequencer while being adaptable to one of the

TMR techniques discussed in Chapter II of this thesis. This provides a means of

verification and comparison between a functional base design and a design with fault

tolerant logic features. It must also be a design that can be used for a comparison of

manual and software-controlled TMR solutions. A block diagram of this design is shown

in Figure 22. The modules created and shown here have the functions discussed in the

following subsections.

Figure 22. Sequencer block diagram without fault-tolerant features

1. State Registers

The module that stores the actual current state of the machine is known as the

state register. In this design, these are formed of a parallel group of four D-flip-flops to

provide the required four-bit state information. This module is clocked with the global

clock and has an asynchronous clear input that resets the FFs to the starting state. The

input of this module is considered the “next state,” and the output is the “current state” of

the machine.

2. Next State Logic

The next state logic is the “brain” of the sequential machine. It takes the input

from the state registers to determine the current state. Combining that information with

the input from the P-POD door status switches and the timer and memory modules, it

determines the next state of the machine. This is done entirely with combinational logic,

leading to a very reliable module.

 43

Using the design developed in the previous section of this chapter, we established

a set of inputs and outputs, and each state was developed. A detailed description of what

occurs in each state is defined in the following.

a. Start State

This is the initial entry state for power up of the state machine. In this

state, the first P-POD number and delay are loaded from memory, sent to the timer, and

the timer is started. Following a launch, the machine returns to this state for the next

launch. The next state for this step is the wait state for all operating conditions, as seen in

Figure 23. In the block diagram, the next-state arc is labelled with its destination state and

the outputs that are asserted.

Figure 23. Algorithmic block diagram for the start state.

b. Wait State

In the wait state, the state machine is waiting for the next P-POD launch as

seen in Figure 24. The logic first checks the timeout signal. If the timeout has not been

raised yet, the machine recycles to the wait state again. If the timeout has been raised, the

logic sets the timer for the P-POD door switch delay. The logic then sets the next state to

the currently selected P-POD in the launch sequence. For example, if the current P-POD

is #4, the next state is the launch state for P-POD #4.

 44

Figure 24. Algorithmic block diagram for the wait state.

c. Launch State

Eight of these states exist in the machine, one for each P-POD. An

example block diagram is seen in Figure 25. Upon entering this state, the machine

immediately starts the timer for the P-POD door. The actual signal to the NEAs is

generated by the launch decoder when it detects the state machine entering a P-POD

launch state. The machine then checks the door status of the door associated with the P-

POD being launched and the timeout signal. It remains in the launch state until either the

door indicates open or the timeout signal is raised. If the door indicates open, the logic

assumes the launch was successful and sets the next state to the “launch success” state. If

the timeout occurs, the logic assumes the door did not open as expected and sets the next

state to the “launch fail” state.

 45

Figure 25. Algorithmic block diagram for the launch state.

d. Launch Success

In the launch success state, the machine sets the associated launch status

bit in the memory to one to indicate a successful launch. It then sets the internal advance

bit high and sets the next state to the advance state. A block diagram is shown in Figure

26.

Figure 26. Algorithmic block diagram for the launch success state.

 46

e. Launch Fail

In the launch fail state, the machine sets the associated launch status bit in

the memory to zero to indicate a failed launch. It then sets the internal advance bit high

and sets the next state to the advance state. The block diagram for this is exactly like that

of the launch success state, except the launch status bit is set to zero vice one.

f. Advance

In the advance state, the machine sets up the transition to the next launch

state. A check is performed to see if the final P-POD has been launched, as indicated by

the address already at seven. If the end has been reached, the next state is set to “done,”

and the machine operation is halted. If the end has not been reached, the machine

advances the address of the current P-POD select lines by one. This serves to load the

next P-POD number and associated delay from the memory module. The timer is reset,

and the machine next state is set to the start state.

Figure 27. Algorithmic block diagram for the advance state.

3. Timer

The timer used here is a simple counting device. It has a multi-bit input for a time

value and a single bit “start” command bit. It also takes input from the global clock and

 47

the system clear commands. The output is a single bit “timeout” value. The timer is

“set” with a value from the memory or next state logic and then started. It increments its

internal counter on each clock, and when the set value is reached, the timeout signal is

raised.

4. Memory

The system memory module stores the launch sequence and required time delays

in a simple lookup table. This function was placed into a separate module to allow for

simple changes to the sequence and to allow for future changes to how the sequence was

stored. It also stores the “launch status” bit for each P-POD, a one for a launch success

and a zero for a launch failure. Future revisions can use more complex storage methods

and external memory or internal FPGA memory. This module was generated as a

separate unit to simplify the future needs of the engineer. To mimic a real memory, this

module takes a three-bit address input and a launch status bit input. The module then

provides a three-bit number for the selected P-POD and a four-bit number for the

programmed time delay for that particular P-POD.

5. 3-Bit Decoder

The final component of the design is the output decoder. This module has a three

bit input, and eight individual output connections, one output for each P-POD. This

component reads the current state of the machine, and if the machine is in a “launch”

state, it generates a high logic signal on the appropriate output pin. This module is

nothing more than a standard binary decoder in this application.

6. State Encoding

Selection of state encoding was performed to make the final output simple. This

allows the least significant three bits of the state registers to be fed directly to the three-

bit decoder to command the NEAs for launch. The state encoding that was employed is

described in Table 3. The additional “DONE” state was added from the preliminary state

diagram to provide a concrete final state and prevent an error from causing the sequencer

to unnecessarily restart the launch sequence.

 48

Table 3. Selected state encoding.

The unused states in this design must be accounted for during the actual

implementation of the design. If an SEU or other error occurs during operation that

causes a bit flip in one of the state flip flops, the machine can enter an undefined state and

remain stuck there until the entire system is reset. The manual method of dealing with

this issue is to assign states to every unused state that simply direct the machine to a

known good state on the next clock cycle. For this design, additional states that direct the

machine back to the “WAIT” state are appropriate. Using the modern design software

however, we can create a “default” state, and the software will automatically correct this

problem without the need for multiple additional entries. The complete behavioral code

developed to fully describe this machine is found in Appendix B.

E. HARDWARE DESCRIPTION

During the course of design, a potential problem was recognized regarding the

output signals to the NEAs. Regardless of the fault tolerance method used in the FPGA,

each output signal must still leave the chip itself via individual output pins, and that one

State MSB LSB
Launch P-POD #1 0 0 0 0
Launch P-POD #2 0 0 0 1
Launch P-POD #3 0 0 1 0
Launch P-POD #4 0 0 1 1
Launch P-POD #5 0 1 0 0
Launch P-POD #6 0 1 0 1
Launch P-POD #7 0 1 1 0
Launch P-POD #8 0 1 1 1
START 1 0 0 0
WAIT 1 0 0 1
ADVANCE 1 0 1 0
LAUNCH FAIL 1 0 1 1
LAUNCH SUCCESS 1 1 0 0
DONE 1 1 0 1
UNUSED 1 1 1 0
UNUSED 1 1 1 1

State Encoding

 49

signal wire is a potential point of failure for the overall system. To mitigate this effect,

another solution was proposed. The output of the sequencer logic to the P-POD’s NEA

needs external fault tolerance. A final output voter must be located outside the FPGA

itself on the supporting PCB.

1. Hardened Launch Voter

The “hardened launch voter” was created to provide a final fault tolerant step

before a launch signal is sent to the P-PODs NEA. This method requires that multiple

outputs from the FPGA are fed into a radiation hardened majority voter to produce a final

launch command. For this design, a three output design was used but could be expanded

if required. A simple schematic can be seen in Figure 28. This design uses radiation

hardened, solid state relay components. The Microsemi Corporation offers parts such as

the MHS series of five amp relay parts that fit this application very well [45].

Figure 28. Radiation hardened launch voter

The construction and integration of this hardware into the actual SAD PCB will

be performed during future integration. This hardware can provide additional fault

tolerance for launch regardless of the particular fault tolerance method used in the

sequencer itself.

For the purposes of this thesis, the hardware voter is simulated with a set of

simple logic gates. A single output can then be generated and the results for triplicated

 50

modules can be compared. Due to the very robust and radiation resistant design for this

hardware, it is very unlikely that any SEEs will occur during operation. In a real

application, the FPGA logic experiences significant errors before an error occurred in the

hardware voter. For this reason, SEEs in the simulated hardware voter module are not

explored.

2. Input Triplication

The only input to the sequencer as designed are eight single bit inputs, one from

each P-POD door switch. In most fault tolerant designs, this input requires fault

protection as well. In that situation, a redundant series of inputs needs to be obtained

from the source. These redundant inputs then require their own voter or verification logic

to deal with potential SETs in the input signals and buffers. This step was not taken for

this sequencer for these two reasons.

The door status switch input serves an informational purpose only. The

sequencer’s next state logic decision to launch or not to launch a P-POD is not based on

this information. This signal serves only to determine the timeout status to exit a launch

state slightly quicker. In the worst case scenario, an SEU in this signal causes a

successful launch to be recorded internally as a launch failure. As the signal itself is

never used as definitive proof of a successful CubeSat deployment, this should not

present a problem during operation.

The signal inputs and outputs into an FPGA are also fairly robust devices. These

drivers are much less susceptible to SEEs than other components of the FPGA. Due to

the internal construction, several adjacent transistors need to be affected simultaneously

to cause an SET in the I/O pins [46]. Given these reasons, and the desire to keep the

design simple for manual TMR, the decision was made not to triplicate the inputs for the

sequencer. These arguments and discussion points apply just as accurately to real flight

hardware as well as the academic scenario.

 51

F. CHAPTER SUMMARY

In this chapter the history and background of the NPSCuL P-POD deployment

sequencer was discussed. The two control options were defined, and the importance of

the proper operation of the onboard system was explained.

Following this overview, we explored the requirements of the sequencer in detail.

The operational requirements were carefully laid out and justified. These operational

requirements answered the real question about what the sequencer actually does for the

NPSCuL. Additional requirements for both the electrical and mechanical systems are

defined and require the sequencer to operate within the existing hardware limits.

Finally, the traditional design process for a sequential machine was applied to this

example case. A flowchart was created covering the operational requirements, and a

Moore-style state machine was developed from the flowchart. Once this was created, a

more detailed breakdown into modules was performed, and specific details were

finalized. A design modification to add TMR reliability to the existing SAD Version 3

PCB was proposed, and final design choices were explained. The Verilog software

description of the sequencer itself, found in Appendix B, was then developed.

Using the sequencer design developed here, we can now perform testing to

determine if this design performs as expected. Software simulations can be created to

prototype and refine the design, and the fault tolerance of the simple sequencer machine

can be compared to that of a redundant TMR version. Once the operation and

performance is satisfactory, the design can be transferred to test hardware for further

verification.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

IV. SEQUENCER FAULT TOLERANCE

A. SOFTWARE IMPLEMENTATION AND TESTING METHODS

The operation of the sequencer design detailed here is simple to test. A designer

must enter the desired launch sequence and delay times into the memory module, then

run a behavioral simulation in a software tool to show that the design provides the

appropriate output at the appropriate times to the launch hardware. In order to test the

fault tolerance of the design, a more complex design is needed. Some means of inserting

transient and permanent faults of various types to any potential location within the design

is necessary.

1. Software Tools

To implement this design in hardware, the machine must first be translated into a

hardware description language (HDL). There are many different types of HDL, but two

in particular are the most widely supported and recognized for FPGA design, Verilog and

very-high-speed integrated circuit hardware description language (VHSIC-HDL or

simply VHDL). The majority of design and testing tools available in the industry support

either of these two primary HDLs. Both languages offer similar features, and there is

little clear advantage of one over another, the choice primarily being what the

programmer is most familiar with. Verilog does have a slight advantage in creating very

low-level constructs, down to individual gate level. VHDL tends to perform better than

Verilog at very high levels of abstraction, with large system-level blocks. With this

consideration in mind, Verilog was chosen as the preferred HDL for this design.

 54

Figure 29. A comparison of Verilog and VHDL considering capability and level of

abstraction required (from [47])

The selection of a development environment for the generation and testing of the

design is an important choice before moving forward. All of the major FGPA

manufacturers, including Xilinx, Microsemi, and Altera offer complete integrated

development software packages, all tailored to primarily support their own hardware

devices. Following a brief review of the available environments, we selected the Xilinx

Integrated Software Environment (ISE7). This tool set offers a complete solution for

logic design and accepts Verilog descriptions as well as allowing for creation of designs

via schematic. Extremely detailed levels of control for all aspects of the design are

provided from the initial creation to device programming and testing. The WebPACK8

version of their ISE is provided as a free download and provides the majority of the

functionality of the other paid versions. While Altera and Microsemi offer very similar

offerings, the selection was based on one critical factor, which is the behavioral

7 ISE® Design Suite is a registered trademark of Xilinx, Inc.
8 WebPACK is a trademark of Xilinx, Inc

 55

simulation software. Xilinx bundles their own product, called the ISE simulator (ISim),

into the Xilinx ISE as shown in Figure 30. This simulation software is very important to

demonstrate the functionality of the sequencer design. ISim supports mixed

Verilog/VHDL, full debug capabilities, and waveform tracing. A single-click

recompile/rerun feature allows the user to quickly make changes to the inputs or the

design and repeat the simulation. This is a critical capability for the fault tolerance

testing that must be performed.

Figure 30. Xilinx ISE simulator (ISim).

2. Testing Methods

Testing the functional operation of the sequencer design is a simple matter. With

only eight inputs in the form of door position indications, traditional testing requires

testing every possible combinations of inputs and validating the outputs. With eight input

bits, this corresponds to 256 possible test cases. This number of cases would be time

consuming but easy to perform, but this level of testing does not take into account the

multiple launch sequences or delays that can be programmed. This design has 40,320

possible combinations of launch sequence, and each sequence has 16 different possible

delays. Doing exhaustive testing requires over 44 quadrillion test cases. While this is

 56

possible with automated tools and scripts, it is time consuming and likely unnecessary.

With this simple design, the test cases can be reduced to just the few cases necessary to

show proper operation for the expected operating conditions.

a. Potential Error Types

The more important testing is that of the design’s performance when experiencing

SEUs and SETs during operation. As discussed in previous chapters, these effects can be

reduced to three typical effects on the logic of the design.

(1) Stuck-at-Zero. In this error type, the value at a particular

gate input or output is stuck at zero, indicating a low value regardless of the required

condition. For example, an SEE that caused a short to ground inside one of the device

transistors may cause that signal line to remain at zero until a complete reset and

reconfiguration of the FPGA occurs. In more extreme cases, such as after considerable

radiation exposure, this condition may be permanent and render that gate or FPGA logic

block inoperable.

(2) Stuck-at-One. Similar to the stuck-at-zero case, except

here the short is to a source that is at the FPGA’s operating voltage or simply above the

threshold voltage for the individual transistor. This indicates a logical one on the stuck

signal line.

(3) Floating Input / Output. A floating input or output is

exceptionally difficult to locate or detect during testing of a physical device. An input

that is electrically disconnected from a gate input causes the gate to behave erratically.

The gate may see the input at a zero or one, or the output may randomly oscillate between

the two values. The behavior also may not be consistent, and a floating signal may cause

the gate to produce an erroneous output at one time and a perfectly proper output seconds

later. This type of error can propagate through the circuit, as a single floating input

causes a floating output in the associated gate, which appears as a floating input to the

next gate. Unlike a physical circuit in the FPGA, the simulation software can detect these

errors and provide a means of locating them. The various simulation packages also

provide propagation paths for these errors, making it possible to predict the potential

circuit behavior.

 57

(4) Single-Bit Inversions (Bit-Flips). A bit flip occurs when a

temporarily stored value in the circuit is altered by an SEE. Some examples are a bit

stored in RAM or the current output value of a flip-flop or register. If an SET occurs at

the wrong moment in the circuit, then it may also cause a bit flip within the circuit. A bit

flip error is more likely to cause a disruption in the operation of a sequential or

combinational machine than either of the “stuck-at” type errors. In the case of a bit flip,

the propagated value is exactly the opposite of what is intended. In a “stuck-at” situation,

that particular line may be stuck at the correct value, masking the error. Due to the

transient nature of these errors, they can be very difficult to detect until they have already

caused an operational problem in the circuit.

There are several other potential error types in a logic circuit that are not

discussed in detail here, including bridging faults feedback bridging faults, “stuck on”

gates, and others. The likelihood of these faults and the stuck-at-zero and stuck-at-one

errors is very unlikely compared to the possibility of a bit-flip [48]. These other faults

occur mainly due to manufacturing defects or other damage to the device from

overheating or overcurrent conditions. These effects generally do not occur unless

damage occurs to the configuration memory in flash or SRAM based FPGAs. Because of

this, the bit-flip and floating logic are the two error types tested. In an operational

environment, these effects can occur at any time, at any location in the circuit.

Exhaustive testing of each possible effect at every circuit junction is obviously not

feasible. These two errors cover both the most likely and worst case scenarios expected

to be encountered by the sequencer in operation.

b. Selected Error Sets

A reduced set of fault locations was selected to provide a representative

sample of potential errors in the logic. These locations were selected to ensure they have

the maximum impact on the operation of the sequencer. Since most SEUs are transient

events, the errors inserted are also transient, and the time of their insertion is set to

provide the maximum error. The following errors are tested for this sequencer design.

 58

(1) Bit-flip in the Timer Module’s Timeout Signal. The

timeout signal is used to indicate that the programed value in the timer has been reached.

This indicates to the sequencer that the time between launches has expired and it should

proceed with a launch or that the wait for the door opening signal has been reached. A

bit flip here can cause an early or delayed activation of a P-POD in the first case or an

erroneous report of a launch failure in the second case. The first case is tested and timed

to try and execute an early launch.

Figure 31. Timeout signal fault location within the sequencer logic.

(2) Bit-flip in the P-POD Select Bus from the Memory

Module. The P-POD select bus line is the communication path from the memory module

to the next state selection logic. An SET in a signal line here can cause the sequencer to

launch the wrong P-POD and result in an incorrect launch sequence. An SEU in the

memory itself has the same result. Either error has the potential to cause the sequencer to

“skip” a P-POD as well, with the final result being one P-POD launched early and one

not launched at all. This error must be inserted at the proper time, when the sequencer is

accessing the memory, or it will have no effect on operation.

 59

Figure 32. P-POD select bus fault location within the sequencer logic.

(3) Bit-flips in the State output Bus from the State Registers. In

any sequential machine, the current and next-state values determine everything that the

machine is doing at the time. Any change to these values results in improper and very

unpredictable operation. To keep the testing set manageable, the test here is performed

on both the least significant bit (LSB) and most significant bits (MSB) of the state

variable output. Testing on the state output has the same effect as testing on the state

variable input, except it introduces a one-clock delay while the error propagates through

the state registers. This error must be present for at least one clock cycle to propagate

through the logic but should have no other time or operation dependence to demonstrate a

significant change in operation.

Figure 33. State output bus fault location within the sequencer logic.

 60

(4) Floating Input in the state output Bus from the State

Registers. A floating input can be inserted to simply track the potential effects of this

error on a real FPGA. This test is performed primarily to determine if the simulation of

TMR design is able to handle a floating input.

(5) Bit-flip in the TMR Logic Circuit. When TMR logic is

introduced to a design, it also introduces additional locations for SEUs to occur. A bit-

flip inserted inside the TMR logic module determines if the design is able to compensate

for this particular error. As the manual TMR method used here involves the state

registers, the timing of the error insertion is similar to that of the errors inserted in the

state variable output.

Figure 34. Basic single bit TMR logic circuit.

(6) Bit-flip in the FPGA Configuration. An error in the FPGA

configuration memory itself is very challenging to simulate, as the exact effects depend

largely on where the errors occur. A worst-case SEU can cause any of the previously

mentioned errors. SETs by nature clear from the system shortly after they occur, and

SEUs are cleared when the memory is rewritten. An SEU inside the configuration

memory, however, could render the affected gate or path in error until the FPGA

configuration is rewritten.

c. Configurable Fault Modules

At this point in the design, a means of inserting the desired errors into the

circuit was required. The initial testing plan required the use of the simulation fault and

 61

forced-value tools built into the Xilinx ISim software. After initial testing, however,

these tools proved very cumbersome for inserting the types of errors that are required. A

configurable fault module was developed and created inside the Xilinx ISE. A schematic

of this module can be seen in Figure 35.

Figure 35. Using a 4-to-1 multiplexor as a fault insertion module.

The obvious first choice was considered of using a simple selectable

inverter or two-to-one multiplexor (MUX) for this module. However, this does not allow

the testing of a floating input or a fixed zero or one signal. A larger MUX provides this

flexibility and reduces the need for multiple types of fault module. The control of this

fault module is performed via the two “select” bits of the four-to-one multiplexor used

here. The module has four possible modes that can be employed during simulation. In

one mode, the module simply passes the input through to the output with no effect on the

signal. In the next mode, the module inverts the input as it passes though. The other two

modes provide a zero signal and a floating I/O signal. As these modules are for testing

only; a SEU fault in these modules or their associated control signals is not considered.

To establish a baseline of operation, a simple launch sequence was

selected, starting with P-POD #1, and stepping through each P-POD in increasing

sequence to P-POD #8. The minimum launch delay was selected for each P-POD. This

reduces both the test length and makes any variations in delay readily apparent. The

effect of the door status switches was verified to operate properly. For the testing here,

 62

the doors were assumed to open with no delay, as expected for real-world operation. As

such, the door status values were set to indicate open. These values were programmed

into the sequence memory module and used for all subsequent tests.

B. SINGLE MODULE PERFORMANCE

An initial simulation was performed to establish the reference condition for error-

free operation. The output waveform can be seen in Figure 36.

Figure 36. Normal sequencer operation with no fault conditions.

This waveform shows the eight launch signals that send a signal to the NEAs

attached to each P-POD. They operate in the programmed sequence from one to eight,

with the correct uniform delay between each launch. The length of each launch pulse and

the delay is kept to a minimum here to demonstrate the design’s function. The design of

this sequential machine requires a minimum time in the launch state of one clock cycle.

The minimum time between launches is four clock cycles as the machine moves from the

launch state to record the status of the last launch, then to load the next launch, wait for

the timeout to expire, and finally move to the next launch state. For real world use, these

values would be set to those discussed in the sequencer’s operational requirements. The

clock speed used for testing runs at 25 MHz, or a 40 ns period. A more detailed view of a

shorter time period can be seen in Figure 37. The most critical internal signals can been

seen here, including the current and next state values and the timer start and timeout

signals. The state encoding in decimal with the state names can be found in Table 4.

 63

Figure 37. Normal sequencer operation with key internal waveforms visible.

Table 4. Sequencer state encoding with decimal state values.

1. Timeout Fault

Inserting the fault into the timeout signal results in clearly undesired

behavior, as seen in Figure 38. In this test case, a fault was inserted in the timeout signal

line at the 260 ns point, and the fault cleared 60 ns later. Analysis of the resulting launch

commands shows an unplanned delay before the launch of P-POD #3. In the normal

case, this launch occurs at 290 ns, but in this case, it did not occur until 330 ns. For this

particular test case, the bit flip error caused a launch delay by effectively blocking the

timeout signal. In cases of longer delays, a bit flip could also cause an early launch.

State Name State Encoding State Name State Encoding
Launch P-POD #1 0 INIT 8
Launch P-POD #2 1 WAIT 9
Launch P-POD #3 2 ADVANCE 10
Launch P-POD #4 3 LAUNCH FAIL 11
Launch P-POD #5 4 LAUNCH SUCCESS 12
Launch P-POD #6 5 DONE 13
Launch P-POD #7 6 START 14
Launch P-POD #8 7 UNUSED 15

 64

Figure 38. Sequencer operation with a fault in the timeout signal.

2. P-POD Select Fault

A P-POD select is expected to cause significant problems for the sequence

if it occurs at the wrong time. The memory returns the incorrect value in the launch

sequence, and the logic attempts to launch based on that value. Similar to the previous

case, the fault was inserted at the 260 ns point and the fault cleared 60 ns later. In this

example, the fault caused the sequencer to select the wrong P-POD, and instead of

issuing a launch command for P-POD #3, it instead re-launched P-POD #1. The

sequencer then continues on with P-POD #4 and completes the remaining sequence. P-

POD #3 is never activated. This would be a mission failure for the associated CubeSats.

Figure 39. Sequencer operation with a fault in the P-POD select signal.

 65

3. State Output Error—MSB

As is expected for a sequential machine, an error inserted in the most

significant bit of the state variables themselves causes a significant series of errors, as

seen in Figure 40. The error insertion was performed at the same time as in previous test

cases. In this case, we can see that as soon as the error is inserted, the machine

immediately enters the launch state for P-POD #1, then one clock period later jumps to

activate P-POD #5. After the error clears, the normal operation resumes, but P-POD #3

is never launched.

Figure 40. Sequencer operation with a fault in the MSB of the state variable.

Several other test cases were performed for the LSB and MSB of the state

output to observe the effects of changing the time and duration of the error. Significant

problems were seen in every case where the error was inserted during a positive clock

edge. To maintain consistency with the following tests, only the first test case presented

here is used for comparisons.

4. State Output Error—LSB

An error inserted into the LSB of the state output caused only a brief delay

in operation when inserted at the 260 ns point as in previous tests. During this time,

shifting that particular bit simply forced the machine back into the wait state for a short

time. However, at other times, the effect is more pronounced. For this case, the error is

inserted at 200 ns and causes a jump from the activation of P-POD#2 to the launch of P-

 66

POD#1. On an actual launch vehicle, this may cause a failure to activate on P-POD#2’s

NEA if the signal was not inserted for sufficient time.

Figure 41. Sequencer operations with a fault in the LSB of the state variable.

C. MANUAL TMR CONFIGURATION AND PERFORMANCE

The sequencer design implemented here requires a fairly small footprint on the

FPGA. To ensure the highest levels of reliability, a distributed TMR scheme was chosen,

with a unique voter set for each of the triplicated sequencers but a global clock and reset

line. In this version of the design, each of the three modules has its own set of NEA

control outputs. These are combined via the hardware voter discussed in Chapter III in

an actual hardware configuration. A block diagram of this configuration is shown in

Figure 42.

 67

Figure 42. Block diagram of a DTMR sequencer with hardened launch voters.

For the software simulation version discussed here, the outputs of the three voters

are combined with a simple software voter before being combined by the launch decoder.

A diagram of this modified version can be seen in Figure 43. This was done for several

reasons. Primarily, the purpose of this simulation was not to test the function of the

hardware voter design. Adding the additional modules to simulate the voters does not

prove their functionality but only demonstrates the functionality of the simulation.

Secondly, adding these additional modules complicates the final design and would result

in an inaccurate final determination of FPGA design overhead. The launch decoder for

this design is simple, and testing of this device was not planned per the developed test

plan. An SEU that occurs in this portion of the logic is negated by the hardened launch

voters in the real-world design.

 68

Figure 43. Block diagram of a DTMR sequencer with a single decoder and output voter.

The core of the TMR concept, the actual voter modules themselves, were created

next using the basic logic gate constructs of Verilog to keep the final result as simple as

possible. A one-bit voter that satisfied the Boolean equation

 A B A C B C Z+ + =   (1)

was created. This logic provides the majority vote of the A, B, and C inputs into the Z

output. Four of these one-bit modules were combined into a state voter module.

An additional module was created with a selectable fault insertion to test an SEU

internal to a TMR module. The error here is a simple inversion of a single bit of the voter

output. An error on the voter input or certain portions of the first layer of gates is

absorbed by the voter function and not seen outside the circuit. The chosen error is the

worst case situation for a voter SEU. Using the fault module developed in the previous

section, we applied the global TMR principles.

As in the previous case, an initial simulation was performed to establish a baseline

case with no faults inserted. This case is shown in Figure 44. The operation and

performance of the TMR version is identical to the basic non-TMR sequencer from the

 69

previous section, with the launch sequence executing exactly as before. This

demonstrates that, at least behaviorally, the addition of the TMR logic does not result in

any changes to the operation of the design.

It should be noted that this simulation does not take into account the gate delays

generated by the additional logic. When tracing signal paths through the TMR design,

only two additional gates have been added in the state output path. Given the high

performance of most FPGA devices and the low clock speeds at which the sequencer

operates, this delay is miniscule and is disregarded for this testing.

Figure 44. Manual TMR sequencer operation with no inserted faults.

1. Timeout Fault

Using the same fault insertion times as the previous case, we inserted a

fault into the timeout line in one of the three timer modules. The fault signal can be seen

being inserted and removed in Figure 45. There is no impact from this fault on the output

of the sequencer. In this case the affected module would have delayed the launch signal,

but the other two modules indicated the correct launch signal. The voter modules used

the majority vote and updated all three modules with the correct next state.

 70

Figure 45. Manual TMR sequencer operation with a fault in the timeout signal.

2. P-POD Select Fault

A P-POD select fault was inserted at the 260 ns point and removed 60 ns

later, exactly as in the single sequencer test performed earlier. As shown in the following

waveform, the single fault has no impact on the overall output of the design, with the

voter modules correcting the machine to the correct state before the error propagates to

the output.

Figure 46. Manual TMR sequencer operation with a fault in the P-POD select signal.

3. State Output Error—MSB

The state output errors were evaluated next, with an error inserted in the

MSB of the state output bus. In the single sequencer case, this type of error had the most

significant effect on the overall operation. The manual TMR can correct this type of

error as well, leaving the overall output unaffected.

 71

Figure 47. Manual TMR sequencer operation with a fault in the MSB of the state
variable.

4. State Output Error—LSB

An error in the LSB of the state output bus of one module also has no

effect on the output of the TMR version of the sequencer, as shown in Figure 48.

Figure 48. Manual TMR sequencer operation with a fault in the LSB of the state variable.

5. Voter Module Fault

In this particular simulation, a fault was inserted into one of the voter

modules. The fault inverts one of the state output bits from the voter module itself. The

erroneous signal is inserted at the 200 ns point and removed 100 ns later. A longer time

was selected to allow the signal to fully propagate back to the associated module. As

shown in Figure 49, the error has no impact on the overall performance. The error signal

only propagates to the final launch voter, where it is filtered out. In a real hardware

implementation of this design, the final launch voter would be replaced by the hardened

launch voters, which would serve the same function.

 72

Figure 49. Manual TMR sequencer operation with a voter module fault.

D. SOFTWARE TMR CONFIGURATION AND PERFORMANCE

For a design such as this sequencer, it is possible for a single engineer to create a

working TMR or other fault tolerant scheme to provide additional reliability for a system.

As the design becomes more complex, adding these features becomes more and more

complex and time consuming. The FPGA industry realized this, and several of the major

manufactures have developed software tools to automate the process. In theory, these

tools should be able to take a single design and produce a triplicated design that performs

to the same level as an engineer making the design manually but in significantly less

time.

The three products considered were Xilinx’s TMRTool9, Mentor Graphics’

Precision10 Synthesis, and Synopsys’s Synplify11 Premier. Unlike the main development

environments, the manufacturers do not generally offer their TMR software packages as

free downloads for purely academic uses. Some of the fault tolerant algorithms and

information is used by U.S. space programs as well as U.S. nuclear programs, and this the

technology is restricted by International Traffic in Arms Regulations (ITAR) laws and

Export Administration Regulation (EAR) controls. Due to these restrictions, only the

Synopsys software, Synplify Premier, was available for use in this design.

9 TMRTool® is a registered trademark of Xilinx, Inc.
10 Precision® is a registered trademark of Mentor Graphics Corporation
11 Synplify® is a registered trademark of Synopsys, Inc.

 73

Figure 50. Synopsys Synplify Premier with Design Planner main interface screen

example.

Transferring the basic sequencer design to the new development environment was

done by exporting the source Verilog files from the Xilinx ISE software. These files

were then imported into the Synplify software as a new project. The Synplify software

allows implementation of TMR features using an attribute assigned in the Verilog code.

This attribute, “syn_radhardlevel” can be assigned to an entire architecture, module, or

down to the single register level [49]. There are three different rad-hard levels allowed

by this implementation, combinatorial cell (CC), TMR, and TMR with CC. Here the

term CC is used to describe a technique specific to Microsemi’s FPGAs where additional

FFs are formed using unused combinatorial logic on-chip. Microsemi’s testing has

indicated that FFs created using this method provide additional resistance to SEUs [50].

 74

To maintain consistency with the manual TMR version that has already been created and

to allow an “apples to apples” comparison in regard to FPGA resources and timing, the

standard TMR method was used.

Figure 51. Synplify’s TMR feature applied to an output, showing software generated

FF’s and majority voter.

1. TMR on State out Registers

For the initial test of the TMR features, the software was configured to perform its

TMR function on the output of the state registers only. This setting resulted in the design

shown in Figure 52. While this result is a useable and functional design, it does not

 75

provide the required level of protection from SEUs. Any errors that occur in the state

outputs are properly corrected by this implementation. Any faults that occurred in the

next state logic, timer, or memory module propagate to the output.

Figure 52. Design results of automatic TMR applied to state output bus only.

2. TMR on Top Level Sequencer Module

To try and provide an equal level of TMR protection with the manual TMR

discussed previously, a second attempt was made using the Synplify software. In this

case, the TMR option was removed from the state output registers and instead applied to

the overall sequencer module. The result was closer to the desired result but still not

complete. The software applied a TMR solution to the state registers and the registers in

the memory and timer module but not the overall design. As shown in Figure 53, this

clearly provides additional fault tolerance over the first design, but the increase in

complexity introduces additional problems. The added gate count from the additional

voters introduces more locations for SEUs to occur. This solution also leaves the next-

state logic as a single point-of-failure for the design.

 76

Figure 53. Design result of TMR applied to top level sequencer module.

Several other attempts were made to apply the TMR attribute to different modules

and signals in the sequencer to try and obtain a result similar to the manual TMR method.

In each case, simple combinational logic was ignored by the software synthesis. There

seems to be no method to force triplication of the combinational logic blocks.

The Synopsis synthesis software does not provide any built-in simulation

software. To perform a fault-tolerance and operational comparison between the software

TMR version generated here and the manual version, an extra step was required. The

generated design was exported in schematic form from the Synplify package. This

schematic was than manually imported as a new design into the Xilinx ISE package and

from there the previously used ISim simulations were performed.

The more complex design generated by this synthesis software raised an

additional challenge for testing. Specifically, a decision had to be made as to where to

insert the test signals. Using the sequencer memory module as an example, the TMR

software triplicated the output registers and added a voter circuit, as shown in Figure 54.

 77

If an SEU occurs in the register itself, this TMR method corrects the problem. If the SEU

occurs in the voter output module or the input to the memory module, then the error

propagates throughout the design.

Figure 54. Detailed view of software TMR on the memory and next state logic interface.

To verify this issue and observe its effects on the performance of the software

TMR sequencer design, the fault modules were added in different locations for the

memory and timer modules and are discussed in their respective sections. The software

TMR’s version of the state registers and voters was very similar to the manual TMR

version, and it was possible to insert the state output faults in the same locations to

achieve the most accurate comparison. A first simulation was performed with no inserted

faults, and the output is identical to the single and manual TMR cases, as seen in Figure

55.

 78

Figure 55. Software TMR simulation with no inserted faults.

3. Timeout Fault

For the timeout fault case, the fault was inserted into one of the triplicated timeout

registers from a single timeout module as seen in Figure 56. This TMR configuration as

delivered by the Synopsys software would probably handle any errors generated in the

timer modules. A simulation was performed with several times and durations of error

inserted, and in each case the circuit corrected the error. A final comparison run was

performed using the same time from the manual TMR case for comparison, as shown in

Figure 57.

Figure 56. Software TMR timer fault insertion schematic showing fault location.

 79

Figure 57. Software TMR sequencer operation with a fault in the timeout signal.

4. P-POD Select Fault

For the P-POD select fault, the error was inserted into the design between the next

state logic and the memory module. As the software TMR solution only applied the

additional registers and voting logic to the module output, no fault protection was

provided. As shown in Figure 58, the error propagated through all three output modules.

Since all three modules produced the same error, the voter was not able to resolve the

issue. Comparing this result to previous cases, we see that the output is the same as the

single, unprotected module seen in Figure 39.

Figure 58. Software TMR sequencer operation with a fault in the P-POD select signal.

5. State Out Errors

The software TMR design and manual TMR designs are nearly identical in their

output with regard to how the state registers and state information is handled. A number

of tests for faults on the MSB and LSB were performed at various insertion times and

durations. These faults had no impact on the operation of the overall sequencer, as

expected in this TMR configuration. A combined case, with errors in both the MSB and

 80

LSB is shown in Figure 59. A fault in the MSB occurs first at the 260 ns point, and a

fault on the LSB occurs at 460 ns. Neither of these errors affects the output of the

sequencer.

Figure 59. Software TMR sequencer operation with faults in the state output MSB and

LSB.

6. Voter Module Fault

The potential problem caused by an SEU in one of the voter modules is

significantly increased with the software TMR solution. This design contains three times

the number of voter modules as the manual TMR version, and faults are more likely due

to the increased physical area used by voters on the FPGA. Several experiments with

voter faults were explored.

a. Timer Voter Faults

Faults in the timer module voters had results very similar to timer faults in

the non-TMR sequencer. This is to be expected, as the software TMR applied only

protection to the timeout signal.

b. Memory Voter Faults

The software TMR solution protects the output registers from the memory

module, specifically the three bit bus that designates the “current” P-POD and the four bit

bus containing the required launch delay. Voter errors in these modules created

significant problems with operation that were not evaluated in the non-TMR version.

Faults inserted here can cause the incorrect P-POD to launch or improper launch delays.

 81

c. State Voter Faults

A fault in the first layer of state voters has no impact on the overall

operation of the software TMR version of the sequencer. Comparable to the manual

TMR version, any error in the voter is absorbed by the output voter. Unlike the manual

TMR version, the software version incorporates a single output voter. Since there is only

one next state-logic module, the software TMR version must have a final voter before the

signal is looped back to the input of the next-state module. In the manual TMR version,

this final state voter was for simulation only and would be replaced with the hardware

voter in an operational design. This introduces an additional point of failure for the

software TMR version, as seen in Figure 60. Here a voter fault introduces a state error

that cannot be corrected by the hardware voter output as in the manual TMR case.

Figure 60. Software TMR sequencer operation with a fault in the second layer state voter

circuit.

E. CHAPTER SUMMARY

In this chapter the design for the basic sequencer was moved from the concepts of

Chapter III into a version that could be simulated in software. A brief review of available

software packages was performed, and a development environment was selected for

future use. The potential effects of SEUs on the FPGA were evaluated and translated into

the expected types of digital logic errors that can occur. A method was then developed to

simulate those errors in software, and the locations for each error were established for

consistent testing.

 82

To establish a baseline for comparison, a series of faults were simulated on a

basic version of the sequencer with no fault tolerant features. The effects on the

operation were evaluated for each fault condition. These tests were then repeated on a

version of the sequencer with TMR protection applied by hand and again on a version

with TMR protection applied via a software tool. Comparisons were made between each

version and the capability of the TMR protection to provide fault-free operation for the

given error conditions.

Upon review of the results in this chapter, there is no doubt that TMR can provide

considerable protection from SEUs. The manual TMR case was most effective in these

tests, as it was able to deliver fault-free operation in every case. The software TMR

version afforded some protection but was not able to avoid error in all cases. The

unprotected logic and the input signals to the protected sections were vulnerable to errors,

as demonstrated in the output errors that occurred from errors in the P-POD select lines.

In addition, the design produced by the software introduced some additional sources of

error, which may further degrade the performance.

For this level of design complexity, manual TMR is not time consuming and

provides superior results to software TMR. As complexity increases, the time required to

apply manual TMR also increases, and the potential for human errors increases. While

the engineering man-hours required to complete a design are important, the following

chapter discusses the other hardware factors that must also be considered.

 83

V. HARDWARE IMPLEMENTATION AND ANALYSIS

A. FPGA IMPLEMENTATION

Translating the design developed in previous chapters onto a physical FPGA is a

complex process. A typical FPGA design flow starts with design entry, then moves to

synthesis, place and route, timing analysis/simulation, and finally device programming.

A brief overview of these steps is covered here to review particular issues for the

sequencer design and fault-tolerance.

1. Design Entry

Design entry is the initial step of FPGA development and was completed and

tested in the previous chapter. The end result of this step is either a Verilog or VHDL

design or, in this case, a combined schematic and Verilog design. The schematics used

here are purely for ease of understanding and visualization for the designer. The

development software converts the schematics to an equivalent Verilog file in the last

stage of this step.

2. Synthesis

Synthesis is the process of converting the high-level circuit description provided

by the HDL into a low-level description using gates and on-chip components, commonly

called register-transfer level (RTL). High performance FPGAs generally do not use basic

gates on chip but instead use a device called a look-up table (LUT). These are essentially

small memory devices that are programmed with the equivalent logic table. A LUT

generally has a lower gate delay and takes less FPGA resources than the equivalent gate

structure, making them both faster and more space-efficient. An example for the voter

circuit is shown in Figure 61.

 84

Figure 61. Conversion of a majority voter logic gate design into a LUT implementation

using a three-input LUT.

In order to synthesize a design for a given FPGA, the software must first know the

exact internal structure of the FPGA to be used. For example, the design above uses a

three-input LUT, but the larger Actel and Xilinx all use four or six input LUTs. The

knowledge of the internal routing structure, clocks, registers and all other on-chip

components is critical to producing a working design. This data is generally built-in to

the development environment, and this is one reason the major FPGA manufacturers also

produce their own development software.

A significant level of design optimization also occurs during this step, and this

presents a potential problem for the fault-tolerant designs. FPGA designers are generally

concerned with two major optimizations, speed and areas. The development software

automatically reviews a given design, rearranges components and removes redundant or

unused gates or signals. An example of the optimization of the timer module, detailing

the final register transfer level (RTL) schematic, is shown in Figure 62. This optimization

is critical if the designer is trying to meet certain timing goals or if the design is large and

may not fit on the FPGA otherwise. Unfortunately, this optimization is detrimental to

TMR designs, as it detects the redundant components and trims them from the final

design. Additional command switches and software options must be set to ensure this

does not occur when developing a TMR logic design.

 85

Figure 62. RTL schematic produced following synthesis of a timer module in the

sequencer design.

3. Place and Route

In the place and route step, the design produced from synthesis is mapped into the

physical logic blocks and I/O pads of the target FPGA. A set of selected user constraints

is loaded first. This maps the I/O pins on the FPGA itself to the I/O markers on the logic

design. Any internal clocks, memory devices, or other on-chip components are assigned

to the design in this file. To complete the process, the optimized design is mapped onto

the physical LUTs, registers, and other components of the target FPGA. The software

generally performs additional optimizations during this step, placing components to

improve performance by keeping signal lines as short as possible or placing them an

exact distance apart from each other to minimize clock skew.

As seen in Figure 63, the final maps are very complex and difficult for humans to

decipher. In this figure, each of the tiny grey blocks are unused logic blocks. The dark

blue blocks are logic blocks that are being used, and the light blue lines are active signal

connections. The red line in this figure is the signal trace for one bit of the P-POD

advance signal, showing its connection between four other logic blocks.

 86

Figure 63. View of a Xilinx FPGA place and route map for the sequencer design.

B. FPGA METRICS

To compare the three sequencer designs developed here, they were run through

both the synthesis and place and route steps. As before, the Xilinx ISE 14.6 was used in

both steps. For consistency and future use on the available development hardware, the

designs were targeted for the Xilinx Virtex-5 device, specifically, the XC5VLX50T.

Several non-standard options were set in the synthesis options to prevent trimming of the

redundant logic by the software as follows [2]:

• Equivalent Register Removal set to FALSE. This prevents the trimming
of duplicate state registers.

• Resource Sharing set to FALSE. This prevents the synthesis software
from attempting to share on-chip resources, such as adders or MUXs
between modules, which would eliminate desired redundancy.

1. Synthesis Results

Following full synthesis of each of the three designs, we reviewed the synthesis report

and the low-level summary results were recorded, as can be seen in Table 5.

 87

Table 5. FPGA Resources used for three different sequencer designs

Sequencer Design Type

Resource Single
Manual

TMR
Software

TMR
Inverters 6 6 6
Two Input LUT 7 21 23
Three Input LUT 8 27 20
Four Input LUT 14 26 13
Five Input LUT 6 26 5
Six Input LUT 21 44 19
MUX 1 10 1
Flip-Flops / Latches 14 42 28

The results here are consistent with what was observed from the block diagrams.

Due to the triplication of entire modules, the manual TMR version consumes three to four

times the resources of the single sequencer. The software TMR version falls between the

two in terms of resources but is closer to the manual TMR version. As would be

expected by the nature of TMR, adding this fault protection results in an overall design

that is at least three times larger than the original.

In each case explored here, the total use of the FPGA was reported as less than

one percent of the total available resources. For example, the FPGA selected has 28,800

LUTs available, and the manual TMR design only used 114 LUTs. The specific FPGA

chosen was selected due to the availability of the development board for testing and is

significantly larger than required for a flight hardware device. An example map showing

the vast quantities of unused space on this FPGA is seen in Figure 64. The logic used by

the manual TMR sequencer is represented by the miniscule light blue dots in the top third

of the map. Using this FPGA does have the advantage of being pin-compatible with the

rad-hard versions of the same FPGA, which reduces the testing costs for future use. In

addition, the extra space provides significant room for any design changes or future

improvements.

 88

Figure 64. Manual TMR sequencer final place and route showing <1% resource usage.

2. Fault Tolerant Place and Route

Using an FGPA that is significantly larger than the design requires also offers

another fault-tolerant advantage that has not been discussed. As the feature size and

operating voltages of the FPGAs decreases, they become more susceptible to MBUs [51].

The software TMR design realized here cannot provide protection from MBUs in most

cases. The manual TMR can provide protection for MBUs if they occur in the same

module or different bit positions in multiple modules. The most robust TMR design

 89

cannot protect against an MBU that causes a bit flip in two adjacent sequencer modules

or voter circuits. Pre-planning the place and route on a design can be used in this case to

spread the modules out over a wide area on the FGPA.

Using the development software, in this case, the Xilinx FPGA Editor or the

PlanAhead12 software, we can obtain a more distributed design. An example of a rough

block diagram for a place and route arrangement is seen in Figure 65. Since radiation

events that cause MBUs are localized to the area the incoming energy impacts the device,

physically separating the modules on-chip ensures that if an MBU occurs, only a single

module of the TMR scheme is impacted and the overall output remains unaffected.

Figure 65. TMR sequencer modules distributed widely across the entire FPGA package.

This concept poses two drawbacks, both in the form of time. For a more complex

design, manually re-distributing the components of the design across the FPGA is time

consuming for the engineer. At the time of this writing there is no automatic software

solution to evenly distribute logic across a large FPGA. The other major concern is

12 PlanAhead ® is a registered trademark of Xilinx, Inc.

 90

timing within the design. As each block is moved, the time for signals to move between

gates is changed. In a normal arrangement, the development software places the blocks

to minimize the clock skew or at least keep it within set parameters. If this routing is

done manually, the clock skew may become fairly large and introduce timing errors into

the design. The increase in distance between modules also increases the total FF output

to input delay, increasing the allowable clock period and lowering the maximum

operating frequency. For the sequencer presented here, the required clock speeds are

very low, and this additional routing time does not impact the operation. In a more

complex design, this could rapidly become a limiting factor.

C. TIMING ANALYSIS

Using the same settings as the previous evaluation, we generated a timing report

for each design. The compiled key portions of the report are shown in Table 6. For the

sequencer design presented here, timing is not a major factor in the design. The

sequencer uses the clock pulses in the internal timing, so the final clock frequency is

determined more by the required delay between launches and not the specifics of the

FPGA technology.

Table 6. Timing comparison for fault tolerant sequencer designs.

Sequencer Design Type

 Single
Manual

TMR
Software

TMR
Minimum Period (ns) 3.132 4.654 4.952
Maximum Frequency (Mhz) 319.25 214.87 201.94
Maximum Combinational Path
Delay (ns) 5.464 5.87 8.626

The current design allows four bits for time delay, so a minimum delay of one

clock period and a maximum delay of 15 times the clock period is possible. Using this

information the following table was generated to determine a reasonable clock frequency.

In this case, even the slowest calculated frequency does not meet the design requirement

for delay between launches, which requires a one second to one hour delay.

 91

Table 7. Available P-POD delay times with various operating frequencies

Clock Frequency

 1 kHz 10 kHz 100 kHz 1 MHz 100 MHz
Minimum Delay (ms) 1 0.1 0.01 0.001 0.0001
Maximum Delay (ms) 15 1.5 0.15 0.015 0.0015

There are two possible solutions to alter the design to meet the initial

requirements. One option is to operate at low clock speed and insert a clock divider into

the timer module. This does not significantly affect the complexity of the design and

provides a reasonable level of control over launch delay. Another option is to alter the

designs to increase the bit-width of the timer. This change increases the size of the timer

module, but it provides a very fine-grain control over the launch delay. Regardless of the

method used, the timing data for the existing designs is more than sufficient to

demonstrate operation at clock speeds well in excess of what will be used by an

operational design.

D. TEST HARDWARE IMPLEMENTATION

1. Board Selection

The final step in testing the sequencer was loading the design onto a hardware

prototyping board for testing. The key features desired were:

• An FPGA that is either already rad-tolerant or at least compatible to a rad-
tolerant version. This ensures the design will be portable to a rad tolerant
device for future use. Development boards with actual radiation tolerant
FPGAs are considerably more expensive and unnecessary for the level of
testing being performed here.

• Sufficient indications and input device onboard to allow testing without
significant additional prototyping boards and components. Specifically,
the board needed a minimum of eight switch inputs for the door switch
inputs, two or three momentary-contact switches to act as clocks or error
signals, and eight LEDs for indication of launch output signals.

Three devices were considered, the NPS ProASIC3 Test Board [2], and two

general prototyping and testing boards, one from Xilinx and one from Actel.

The NPS ProASIC3 board, as the planned board for future testing with the SAD

V3, was considered the ideal choice for testing, but it lacks a simple means of adding

 92

additional input devices for design testing. To use this board for verification, an

additional prototyping board needs to be manufactured with the appropriate inputs, and

additional testing and troubleshooting of this new, one-time use hardware is required.

The second choice was the Microsemi ARM13 Cortex14 ProASIC15 3L M1A3PL-

DEV-KIT development kit, shown in Figure 66. Similar to the NPS ProASIC3 board, this

evaluation board uses the Actel M1A3PL1000 FPGA. This FPGA is compatible with the

Radiation Tolerant (RT) ProASIC3 FGPA, which includes both a high level of radiation

resistance, as well as built-in TMR features in the I/O banks, some FFs, and the clock

network [52]. This development board includes eight dual-inline package (DIP)

switches, eight LEDs and general I/OI connections that can be used to insert faults with

only minor hardware changes.

Figure 66. Microsemi ARM Cortex-M1-Enabled ProASIC3L Development Kit.

13 ARM ® is a registered trademark of ARM Holdings
14 Cortex is a trademark of ARM Holdings
15 ProASIC is a registered trademark of Microsemi Corporation

 93

The final kit considered was a Digilent Genesys16 development kit, which

employed the Xilinx Virtex-5 LX50T FPGA. Xilinx offers a radiation hardened version

of this FPGA, the Virtex-5QV. This board is much more complex but offers the widest

array of onboard I/O devices. Similar to the Microsemi board, a bank of eight LEDs and

eight switches are offered [53]. This board also includes several momentary-contact

pushbutton switches and allows for immediate use for testing with no hardware

modifications necessary. The Genesys development board can be seen in Figure 67.

Figure 67. Digilent Genesys development board with Xilinx Virtex-5 FPGA.

The Digilent Genesys board was chosen for testing on this design. The criteria

used for selection hinged on two factors: one, the ability to use the board immediately,

with no additional hardware testing required; and two, compatibility with the

16 Genesys is a trademark of Digilent, Inc.

 94

development environment in use. By using a Xilinx-based product, the designs can be

quickly compiled and programed using the Xilinx ISE that has been used for the majority

of the prior design work. While it is possible to port the Verilog design to another

environment and then program the Microsemi devices, this adds extra steps to each

iteration. Using a Xilinx device also allows more accurate comparisons to the data

collected previously in this thesis.

2. Design Modification for Hardware Testing

To adapt the sequencer to the physical hardware for testing, the first task was to

map the I/O devices on the hardware to the I/O pads in the design files. The switches

were mapped to the P-POD door status input switches. The launch signals that activate

the NEAs were mapped to the on-board LEDs. The Xilinx Virtex-5 FPGA offers a wide

array of internal clocking devices and multiple clock domains. This design is very

flexible and powerful but overly complex for this small sequencer. The Genesys board

offers a simple external 100 MHz clock pin, which is ideal for this implementation. A

32-bit counter was added to the top level of the design to act as a selectable frequency

divider. For testing, the LED that is normally assigned to the launch signal for P-POD #8

was instead assigned to the clock to provide a “heartbeat” to ensure the design was

operating. This allows a very precise method to step through the operation and allows

time to insert various faults manually and observe the results. The on-board RESET

button was assigned to the CLR signal to reset the design back to the starting condition at

any time. The various error signals were mapped to the remaining momentary contact

pushbuttons.

3. Hardware Testing

Basic operational testing was performed with the single sequencer design. Initial

adjustments were made with the frequency divider to achieve a clock rate of about 1.5 Hz

using bit 26 of the divider. Once loaded, the design properly stepped through the

programmed sequence. An example, showing the P-POD launch signal at LD4

 95

(representing P-POD #5) and the clock signal on LD7 can be seen in Figure 68. Faults

inserted with the mapped pushbuttons demonstrated faults in the sequence similar to

those shown in simulation.

Figure 68. A demonstration of the sequencer operating on the Genesys test board.

Final testing with the manual TMR sequencer demonstrated results similar to

those shown by the simulations in the previous chapter. Insertion of faults via the push

buttons had no impact on the programmed sequence, indicating the fault tolerant design

was working properly.

With the available hardware test devices, it is difficult to perform complete

hardware level testing. A more complete test board that included connections for an

external digital logic analyzer is necessary. Use of one of these devices allows capture of

the actual logic waveforms inside the design while it is running in the FPGA and

provides a direct comparison for the design simulations performed in the previous

chapter. Without those test connections and the logic analyzer equipment, the possible

hardware testing is somewhat restricted.

 96

E. CHAPTER SUMMARY

Implementation of the fault tolerant sequencer in a physical hardware board was

discussed in this chapter. A brief discussion on the complex process of moving from a

Verilog or schematic design to an actual FPGA was discussed. Each step of this process,

from synthesis to generating the final programing file for the FPGA, has dozens of

internal steps. Each of these stages has many configuration options in software that

control the optimization, speed, compatibility and format of the final product. Careful

control of these settings is essential to avoid an “optimization” step removing all of the

redundancy offered by these fault tolerant techniques.

A comparison of the key FPGA metrics was presented next, providing an

overview of the actual hardware that is required by the sequencer. An example of the

major drawback of fault tolerant designs, the cost in hardware resources, was provided in

this section. Both fault tolerant designs consumed about three times the number of gates

and FFs as the non-protected version. Any fault tolerant logic designer must keep this in

mind, especially when using premade logic cores such as large processors or purpose-

built cores. Triplicating these designs can quickly cause the engineer to run out of system

resources.

Finally, a comparison was made of the various hardware boards available for

testing at the time of writing. Given the various choices available, the Digilent Genesys

board was the appropriate decision. This board provided all the necessary testing features

to validate the operation of the sequencer and TMR features on physical hardware. This

testing was performed and the design validated. This testing method demonstrated the

overall operation of the sequencer but is somewhat limited since internal signals and

operation cannot be verified once in hardware without adding a significant amount of

additional signals and I/O devices to the testing hardware. The performance of the

sequencer here meets the operational and design requirements specified in earlier

chapters. A summary and recommendations for further development are found in the

following chapter.

 97

VI. CONCLUSION AND RECOMMENDATIONS FOR FUTURE
WORK

The difficulties of operating complex electronic devices in a radiation

environment like that encountered by spacecraft on orbit were discussed in this thesis.

Radiation has some impact on all electronics, but the focus here was on FPGA

technology. The design of a launch control sequencer suitable for use on the NPSCuL

was detailed. A fault tolerant technique, TMR, was discussed and applied to the design

using both manual methods and automatic software tools. The fault tolerances of the

three final designs were compared. Implementation of the design in physical hardware

was discussed and testing was performed on a development kit that verified the

simulation results that showed the effectiveness of the manual TMR design in correcting

SETs or SEUs.

A. CONCLUSIONS

New developments in FPGA manufacturing technology has produced radiation

tolerant devices with significant resistance to upsets. Despite the high cost and complex

features of these specialized FPGAs, these errors still occur. In order to combat these

effects, various fault tolerant logic design methods were discussed. TMR, which has

been proven to be a reliable fault tolerance method, was selected as the appropriate

method for this design. TMR lends itself very well to a modular design, allowing its

application to either small or large blocks of logic. While the design presented here is

fairly small, the techniques scale with larger designs.

For this level of design, the manual TMR method is clearly superior in its ability

to tolerate errors over the software and single TMR design. The very small increase in

FPGA resources for the manual method is insignificant compared to the level of

protection provided by replicating all of the major modules. The major FGPA

manufactures are constantly improving their designs with more and more gates, and this

serves to drive down the cost-per-gate for a given FPGA. The FPGAs considered for

 98

similar applications should have more than sufficient overhead to support the most robust

TMR design. This practice will also provide room for the future, allowing extra gates for

new features and upgrades.

The sequencer developed here represents a specific application of the design

techniques that should be employed for similar fault-tolerant projects. Separating the

design into functional modules not only makes the development process easier, but it

makes future changes or upgrades much easier. This approach also provides more

opportunities for insertion of fault-tolerant features.

B. FOLLOW-ON RESEARCH

1. Radiation Testing

There are numerous areas that will require additional study and development

before this sequencer design can be used in an actual mission. Additional testing and

integration must be performed before the sequencer can be adapted to the existing

NPSCuL hardware. In particular, the TMR version of the design requires actual radiation

testing. While the most common or likely faults were simulated in this thesis, it cannot

compare to testing in a real radiation environment. This task will require creation of a

testing rig to allow communication while the FPGA is being irradiated and a method to

detect and record the errors encountered. Retooling the existing design to support this

very detailed monitoring will be a challenging task.

2. Place and Route Effects on MBU

As discussed in Chapter V, the effects of controlling the placement of logic blocks

when they are being mapped onto an FPGA is an interesting direction of study. A

carefully mapped placement of these blocks in a TMR type design is theoretically more

resistant to radiation effects while not significantly affecting the performance of the

design. This concept may be expanded beyond the humble sequencer design in the

future.

 99

3. Additional FPGA Features/Uses

One of the driving factors for using an FPGA in the sequencer design for the

NPSCuL is the flexibility of the design. Not only can updates and improvements be

performed quickly and without additional hardware testing, but new features can be

added. Exploring some of the new features and capabilities possible with the NPSCuL

after the CubeSats have been launched is an interesting area of study. Reusing the

sequencer hardware once its primary mission is complete would be an excellent use of

existing resources. The improved SADv3 design added several new memory options that

are currently unused, and integration of these and other features presents an interesting

opportunity for study.

4. Software Comparison

In this thesis, only one primary software package was used to perform the TMR

functions. The three major FGPA manufacturers each offer TMR and fault-tolerance

design features in their respective software packages. Due to ITAR restrictions,

obtaining these software packages is difficult. A comparison of the features and

performance of the various tools for this application would be useful for future designs.

 100

THIS PAGE INTENTIONALLY LEFT BLANK

 101

APPENDIX A. DESIGN SCHEMATICS

The sequencer design used a mix of Verilog code and Xilinx ISE schematic files.

The schematic files for each of the three designs are contained in this appendix.

A. SINGLE SEQUENCER TOP LEVEL SCHEMATIC

 102

B. SINGLE SEQUENCER WITH FAULT MODULES TOP LEVEL
SCHEMATIC

 103

C. MANUAL TMR SEQUENCER WITH INTERNAL FAULT MODULES
TOP LEVEL SCHEMATIC

1. Manual TMR Basic Sequencer Module

 104

2. Manual TMR Basic Sequencer Module with Fault Modules

 105

D. SOFTWARE TMR SEQUENCER WITH FAULT MODULES

 106

THIS PAGE LEFT INTENTIONALLY BLANK

 107

APPENDIX B. VERILOG CODE

A. STATE REGISTERS

`timescale 1ns / 1ps
///
///////////
// Company: Naval Postgraduate School
// Engineer: LCDR Jason Brandt
//
// Create Date: 10:38:58 09/02/2013
// Design Name: NPSCuL Sequencer
// Module Name: state_registers
// Project Name: Sequencer
// Target Devices: Xilinx Virtex-5
// Tool versions: ISE 14.6
// Description: Four bit state registers with preset/clear
//
// Dependencies: None
//
// Revision: 2
// Revision 0.01 - File Created
// Additional Comments: None
//
///
///////////
module state_registers(
 input [3:0] state_in,
 output reg [3:0] state_out,
 input CLK,
 input CLR
);

 always @(posedge CLK or posedge CLR) begin

 if (CLR) state_out = 8; // clear sets START state

 else state_out = state_in;

 end

endmodule

B. TIMER MODULE

`timescale 1ns / 1ps
///
///////////
// Company: Naval Postgraduate School
// Engineer: LCDR Jason Brandt
//
// Create Date: 11:09:27 09/02/2013
// Design Name: NPSCuL Sequencer

 108

// Module Name: timer
// Project Name: Sequencer
// Target Devices: Xilinx Virtex-5
// Tool versions: ISE 14.6
// Description: Count-up timer with async clear/start, and timeout
signal
//
// Dependencies:
//
// Revision: 4
// Revision 0.01 - File Created
// Additional Comments: None
//
///
///////////
module timer(
 input [3:0] time_value,
 input start,
 input CLK,
 input CLR,

 output reg timeout = 0
);

 reg [3:0] counter = 0;
 reg [3:0] init_counter = 0;

 always @(posedge start or posedge CLR) begin
 counter = 0;
 if(CLR) init_counter = 0;
 else if(start) init_counter = time_value;
 else init_counter = 0;
 end

 always @(posedge CLK) begin

 if(timeout) timeout <= 0;

 else if(counter == init_counter)
 timeout <= 1;

 else begin
 counter <= counter + 1;
 timeout <= 0;
 end

 end

endmodule

 109

C. NEXT STATE MODULE

`timescale 1ns / 1ps
///
///////////
// Company: Naval Postgraduate School
// Engineer: LCDR Jason Brandt
//
// Create Date: 12:41:12 08/24/2013
// Design Name: NPSCuL Sequencer
// Module Name: Sequencer_Next_State
// Project Name: Sequencer
// Target Devices: Xilinx Virtex-5
// Tool versions: ISE 14.6
// Description: Next-state logic for sequencer
//
// Dependencies: None
//
// Revision: 8
// Revision 0.01 - File Created
// Additional Comments:
//
///
///////////
module sequencer_next_state(

 // Door Status Switch Inputs from door hardware
 // Assume: 0 = Door SHUT, 1 = Door OPEN
 input [7:0] door_status,
 input [2:0] current_ppod, // PPod being launched
 input [3:0] current_ppod_delay, // delay for current PPod
 input timeout, // input from timer

 input CLR,

 input [3:0] current_state, // input from state register
 output reg [3:0] next_state, // output to state register

 output reg [2:0] get_next_ppod = 0, // get next ppod number and
delay from storage

 output reg launch_status, // store launch status in storage

 output reg [3:0] time_value, // outputs for timer
 output reg time_start
);

 // Define States
 reg ppod_advance = 0;

 parameter INIT = 8;
 parameter WAIT = 9;
 parameter ADVANCE = 10;
 parameter LAUNCH_FAIL = 11;
 parameter LAUNCH_SUCCESS = 12;

 110

 parameter DONE = 13;
 parameter LAUNCH1 = 0;
 parameter LAUNCH2 = 1;
 parameter LAUNCH3 = 2;
 parameter LAUNCH4 = 3;
 parameter LAUNCH5 = 4;
 parameter LAUNCH6 = 5;
 parameter LAUNCH7 = 6;
 parameter LAUNCH8 = 7;
 parameter START = 14;

 parameter ppod_door_delay = 5; // default wait for door to open

 always @ (*) begin
 if(CLR) begin
 ppod_advance <= 0;
 time_start <= 0;
 next_state <= START;
 get_next_ppod <= 0;

 end

 case (curresnt_state)

 default: begin
 next_state <= START;
 end

 INIT: begin // additional wait state to allow timeout to
clear
 time_start <= 0;
 next_state <= START;
 end

 START: begin
 time_value <= current_ppod_delay; // start launch
timer
 time_start <= 1;
 next_state <= WAIT;
 end

 WAIT: begin

 if(timeout) begin
 time_value <= ppod_door_delay; // set timer for
ppod door timeout
 time_start <= 0;
 next_state <= current_ppod; // jump to launch state
based on PPOD #
 end

 else
 next_state <= WAIT;

 111

 end

 ADVANCE: begin
 time_start <= 0;
 next_state <= START;
 if(ppod_advance) begin // advance sequence
 if(get_next_ppod == 7) next_state <= DONE;
 else begin
 launch_status <= 0;
 get_next_ppod <= get_next_ppod + 1;
 ppod_advance <= 0;
 end
 end
 end

 LAUNCH_FAIL: begin
 launch_status <= 0;
 ppod_advance <= 1;
 next_state <= ADVANCE;
 end

 LAUNCH_SUCCESS: begin
 launch_status <= 1;
 ppod_advance <= 1;
 next_state <= ADVANCE;
 end

 DONE: begin
 next_state <= DONE;
 end

 LAUNCH1: begin
 time_start <= 1; // start door timer
 if(door_status[0])
 next_state <= LAUNCH_SUCCESS;

 else if(timeout)
 next_state <= LAUNCH_FAIL;

 else
 next_state <= LAUNCH1;

 end

 LAUNCH2: begin
 time_start <= 1; // start door timer
 if(door_status[1])
 next_state <= LAUNCH_SUCCESS;

 else if(timeout)
 next_state <= LAUNCH_FAIL;

 else
 next_state <= LAUNCH2;

 112

 end
 LAUNCH3: begin
 time_start <= 1; // start door timer
 if(door_status[2])
 next_state <= LAUNCH_SUCCESS;

 else if(timeout)
 next_state <= LAUNCH_FAIL;

 else
 next_state <= LAUNCH3;

 end
 LAUNCH4: begin
 time_start <= 1; // start door timer
 if(door_status[3])
 next_state <= LAUNCH_SUCCESS;

 else if(timeout)
 next_state <= LAUNCH_FAIL;

 else
 next_state <= LAUNCH4;

 end
 LAUNCH5: begin
 time_start <= 1; // start door timer
 if(door_status[4])
 next_state <= LAUNCH_SUCCESS;

 else if(timeout)
 next_state <= LAUNCH_FAIL;

 else
 next_state <= LAUNCH5;

 end
 LAUNCH6: begin
 time_start <= 1; // start door timer
 if(door_status[5])
 next_state <= LAUNCH_SUCCESS;

 else if(timeout)
 next_state <= LAUNCH_FAIL;

 else
 next_state <= LAUNCH6;

 end
 LAUNCH7: begin
 time_start <= 1; // start door timer
 if(door_status[6])
 next_state <= LAUNCH_SUCCESS;

 else if(timeout)

 113

 next_state <= LAUNCH_FAIL;

 else
 next_state <= LAUNCH7;

 end
 LAUNCH8: begin
 time_start <= 1; // start door timer
 if(door_status[7])
 next_state <= LAUNCH_SUCCESS;

 else if(timeout)
 next_state <= LAUNCH_FAIL;

 else
 next_state <= LAUNCH8;

 end

 endcase

 end

endmodule

D. SEQUENCE MEMORY MODULE

`timescale 1ns / 1ps
///
///////////
// Company: Naval Postgraduate School
// Engineer: LCDR Jason Brandt
//
// Create Date: 10:04:10 09/02/2013
// Design Name: NPSCuL Sequencer
// Module Name: Sequence_Memory
// Project Name: Sequencer
// Target Devices: Xilinx Virtex-5
// Tool versions: ISE 14.6
// Description: Memory module sets launch sequence and delay times
//
// Dependencies: None
//
// Revision: 2
// Revision 0.01 - File Created
// Additional Comments: None
//
///
///////////
module sequence_memory(
 input [2:0] select_ppod,
 input launch_status_in,
 output reg [2:0] ppod_number_out,
 output reg [3:0] ppod_delay_out
);

 114

 reg [7:0] launch_status = 0;

 parameter LAUNCH_SEQ_1 = 0; // set sequence here
 parameter LAUNCH_SEQ_2 = 1;
 parameter LAUNCH_SEQ_3 = 2;
 parameter LAUNCH_SEQ_4 = 3;
 parameter LAUNCH_SEQ_5 = 4;
 parameter LAUNCH_SEQ_6 = 5;
 parameter LAUNCH_SEQ_7 = 6;
 parameter LAUNCH_SEQ_8 = 7;

 parameter LAUNCH_DEL_1 = 5; // set time delay here
 parameter LAUNCH_DEL_2 = 10;
 parameter LAUNCH_DEL_3 = 15;
 parameter LAUNCH_DEL_4 = 5;
 parameter LAUNCH_DEL_5 = 10;
 parameter LAUNCH_DEL_6 = 15;
 parameter LAUNCH_DEL_7 = 5;
 parameter LAUNCH_DEL_8 = 10;

 always @ (*) begin

 launch_status[ppod_number_out] <= launch_status_in;

 case (select_ppod)

 0: begin
 ppod_number_out = LAUNCH_SEQ_1;
 ppod_delay_out = LAUNCH_DEL_1;
 end

 1: begin
 ppod_number_out = LAUNCH_SEQ_2;
 ppod_delay_out = LAUNCH_DEL_2;
 end

 2: begin
 ppod_number_out = LAUNCH_SEQ_3;
 ppod_delay_out = LAUNCH_DEL_3;
 end

 3: begin
 ppod_number_out = LAUNCH_SEQ_4;
 ppod_delay_out = LAUNCH_DEL_4;
 end

 4: begin
 ppod_number_out = LAUNCH_SEQ_5;
 ppod_delay_out = LAUNCH_DEL_5;
 end

 5: begin
 ppod_number_out = LAUNCH_SEQ_6;

 115

 ppod_delay_out = LAUNCH_DEL_6;
 end

 6: begin
 ppod_number_out = LAUNCH_SEQ_7;
 ppod_delay_out = LAUNCH_DEL_7;
 end

 7: begin
 ppod_number_out = LAUNCH_SEQ_8;
 ppod_delay_out = LAUNCH_DEL_8;
 end

 endcase

 end

endmodule

E. LAUNCH DECODER

`timescale 1ns / 1ps
///
///////////
// Company: Naval Postgraduate School
// Engineer: LCDR Jason Brandt
//
// Create Date: 14:26:47 09/08/2013
// Design Name: NPSCuL Sequencer
// Module Name: launch_decoder
// Project Name: Sequencer
// Target Devices: Xilinx Virtex-5
// Tool versions: ISE 14.6
// Description: Three-bit decoder
//
// Dependencies: None
//
// Revision: 1
// Revision 0.01 - File Created
// Additional Comments:
//
///
///////////
module launch_decoder(
 input [3:0] dec_in,
 output launch_1,
 output launch_2,
 output launch_3,
 output launch_4,
 output launch_5,
 output launch_6,
 output launch_7,
 output launch_8
);

 116

 and(launch_1,~dec_in[3],~dec_in[2],~dec_in[1],~dec_in[0]);
 and(launch_2,~dec_in[3],~dec_in[2],~dec_in[1],dec_in[0]);
 and(launch_3,~dec_in[3],~dec_in[2],dec_in[1],~dec_in[0]);
 and(launch_4,~dec_in[3],~dec_in[2],dec_in[1],dec_in[0]);
 and(launch_5,~dec_in[3],dec_in[2],~dec_in[1],~dec_in[0]);
 and(launch_6,~dec_in[3],dec_in[2],~dec_in[1],dec_in[0]);
 and(launch_7,~dec_in[3],dec_in[2],dec_in[1],~dec_in[0]);
 and(launch_8,~dec_in[3],dec_in[2],dec_in[1],dec_in[0]);

endmodule

F. ONE-BIT VOTER MODULE

`timescale 1ns / 1ps
///
///////////
// Company: Naval Postgraduate School
// Engineer: LCDR Jason Brandt
//
// Create Date: 13:43:50 09/08/2013
// Design Name: NPSCuL Sequencer
// Module Name: voter_one_bit
// Project Name: Sequencer
// Target Devices: Xilinx Virtex-5
// Tool versions: ISE 14.6
// Description: One bit majority voter
//
// Dependencies: None
//
// Revision: 1
// Revision 0.01 - File Created
// Additional Comments:
//
///
///////////
module voter_one_bit(
 input a,
 input b,
 input c,
 output vote_out
);

 wire a_1;
 wire b_1;
 wire c_1;

 and(a_1, a, b);
 and(b_1, a, c);
 and(c_1, b, c);

 or(vote_out, a_1, b_1, c_1);

endmodule

 117

G. STATE VOTER MODULE

`timescale 1ns / 1ps
///
///////////
// Company: Naval Postgraduate School
// Engineer: LCDR Jason Brandt
//
// Create Date: 13:40:09 09/08/2013
// Design Name: NPSCuL Sequencer
// Module Name: state_voter
// Project Name: Sequencer
// Target Devices: Xilinx Virtex-5
// Tool versions: ISE 14.6
// Description: Four bit majority voter
//
// Dependencies: voter_one_bit
//
// Revision: 1
// Revision 0.01 - File Created
// Additional Comments: None
//
///
///////////
module state_voter(
 input [3:0] a,
 input [3:0] b,
 input [3:0] c,
 output [3:0] vote_out
);
 voter_one_bit bit0 (
 .a(a[0]),
 .b(b[0]),
 .c(c[0]),
 .vote_out(vote_out[0])
);
 voter_one_bit bit1 (
 .a(a[1]),
 .b(b[1]),
 .c(c[1]),
 .vote_out(vote_out[1])
);
 voter_one_bit bit2 (
 .a(a[2]),
 .b(b[2]),
 .c(c[2]),
 .vote_out(vote_out[2])
);
 voter_one_bit bit3 (
 .a(a[3]),
 .b(b[3]),
 .c(c[3]),
 .vote_out(vote_out[3])
);
endmodule

 118

H. STATE VOTER WITH FAULT INSERTION

`timescale 1ns / 1ps
///
///////////
// Company: Naval Postgraduate School
// Engineer: LCDR Jason Brandt
//
// Create Date: 13:23:09 10/08/2013
// Design Name: NPSCuL Sequencer
// Module Name: state_voter_with_fault
// Project Name: Sequencer
// Target Devices: Xilinx Virtex-5
// Tool versions: ISE 14.6
// Description: Four bit majority voter with insertable fault
//
// Dependencies: voter_one_bit
//
// Revision: 2
// Revision 0.01 - File Created
// Additional Comments: None
//
///
///////////

module state_voter_with_fault(
 input [3:0] a,
 input [3:0] b,
 input [3:0] c,
 input voter_fault_enable,
 output [3:0] vote_out
);

 wire bit0_internal;

 voter_one_bit bit0 (
 .a(a[0]),
 .b(b[0]),
 .c(c[0]),
 .vote_out(bit0_internal)
);

 voter_one_bit bit1 (
 .a(a[1]),
 .b(b[1]),
 .c(c[1]),
 .vote_out(vote_out[1])
);
 voter_one_bit bit2 (
 .a(a[2]),
 .b(b[2]),
 .c(c[2]),
 .vote_out(vote_out[2])
);
 voter_one_bit bit3 (

 119

 .a(a[3]),
 .b(b[3]),
 .c(c[3]),
 .vote_out(vote_out[3])
);

 assign vote_out[0] = (voter_fault_enable) ? ~bit0_internal :
bit0_internal;

endmodule

I. BEHAVIORAL TEST FIXTURE

// Verilog test fixture created from schematic C:\Users\Jason
Brandt\Dropbox\NPS\Thesis\Single_Sequencer_Test_Rev3\Sequencer_Basic.sc
h - Sat Nov 02 06:56:44 2013

`timescale 1ms / 1ms

module Sequencer_Basic_Sequencer_Basic_sch_tb();

// Inputs
 reg CLR;
 reg CLK;
 reg [7:0] DOOR_STATUS;
 reg [1:0] timeout_fault_sel;
 reg [1:0] ppod_select_fault_sel;
 reg [1:0] current_state_fault_sel_bit2;
 reg [1:0] current_state_fault_sel_bit3;
 reg [1:0] current_state_fault_sel_bit1;
 reg [1:0] current_state_fault_sel_bit0;

// Output
 wire LAUNCH1;
 wire LAUNCH2;
 wire LAUNCH3;
 wire LAUNCH4;
 wire LAUNCH5;
 wire LAUNCH6;
 wire LAUNCH7;
 wire LAUNCH8;

// Bidirs

// Instantiate the UUT
 Sequencer_Basic UUT (
 .CLR(CLR),
 .CLK(CLK),
 .DOOR_STATUS(DOOR_STATUS),
 .timeout_fault_sel(timeout_fault_sel),
 .ppod_select_fault_sel(ppod_select_fault_sel),
 .current_state_fault_sel_bit2(current_state_fault_sel_bit2),
 .current_state_fault_sel_bit3(current_state_fault_sel_bit3),
 .current_state_fault_sel_bit1(current_state_fault_sel_bit1),
 .current_state_fault_sel_bit0(current_state_fault_sel_bit0),

 120

 .LAUNCH1(LAUNCH1),
 .LAUNCH2(LAUNCH2),
 .LAUNCH3(LAUNCH3),
 .LAUNCH4(LAUNCH4),
 .LAUNCH5(LAUNCH5),
 .LAUNCH6(LAUNCH6),
 .LAUNCH7(LAUNCH7),
 .LAUNCH8(LAUNCH8)
);
// Initialize Inputs

 initial begin
 CLR = 0;
 CLK = 0;
 DOOR_STATUS = 0;
 timeout_fault_sel = 0;
 ppod_select_fault_sel = 0;
 current_state_fault_sel_bit3 = 0;
 current_state_fault_sel_bit2 = 0;
 current_state_fault_sel_bit1 = 0;
 current_state_fault_sel_bit0 = 0;

 #2
 CLR = 1;
 DOOR_STATUS = 255;
 #4
 CLR = 0;
 // Uncomment relevant section to enable specific faults

// Timeout fault
// #200
// timeout_fault_sel = 1;
// #60
// timeout_fault_sel = 0;

// PPOD select fault
// #200
// ppod_select_fault_sel = 1;
// #60
// ppod_select_fault_sel = 0;

// State Output fault - MSB Case #1
// #200
// current_state_fault_sel_bit3 = 1;
// #60
// current_state_fault_sel_bit3 = 0;

// State Output fault - MSB Case #2
// #140
// current_state_fault_sel_bit3 = 1;
// #10
// current_state_fault_sel_bit3 = 0;

 121

// State Output fault - LSB Case #1
// #140
// current_state_fault_sel_bit0 = 1;
// #60
// current_state_fault_sel_bit0 = 0;

 end

 always begin
 #1
 CLK = ~CLK;
 end

endmodule

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

LIST OF REFERENCES

[1] A. D. Harris, “NPS Cubesat launcher-lite sequencer,” M.S. thesis, Naval
Postgraduate School, Monterey, CA, 2009.

[2] L. S. Parobek, “Research, development & testing of a fault-tolerant FPGA based
sequencer for CubeSAT launching applications,” M.S. thesis, Naval Postgraduate
School, Monterey, CA, 2013.

[3] D. A. Ebert, “Design and development of a configurable fault-tolerant processor
(CFTP) for space applications,” M.S. thesis, Naval Postgraduate School,
Monterey, CA, 2003.

[4] R. Yuan, “Triple modular redundancy (TMR) in a configurable fault-tolerant
processor (CFTP) for space applications,” M. S. thesis, Naval Postgraduate
School, Monterey, CA, 2003.

[5] J. D. Snodgrass, “Low-power fault tolerance for spacecraft FPGA-based
numerical computing,” PhD dissertation, Naval Postgraduate School, Monterey,
CA, 2006.

[6] M. A. Sullivan, “Employment of reduced precision redundancy for fault tolerant
FPGA applications,” IEEE Symposium on Field Programmable Custom
Computing Machines, Monterey, CA, 2009.

[7] P. J. Majewicz, “Implementation of a Configurable Fault Tolerant Processor
(CFTP) using Internal Triple Modular Redundancy (TMR),” M.S. thesis, Naval
Postgraduate School, Monterey, CA, 2005.

[8] National Areonautics and Space Administration, “NASA CubeSat launch
initiative.” [Online]. Available:
http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html. [Accessed
31 October 2013].

[9] The CubeSat Program, “CubeSat design specification, Revision 12,” California
Polytechnic State University, San Luis Obispo, CA, 2009.

[10] A. DeJesus, “NPS CubeSat Launcher Program Update,” in CubeSat Developers
Workshop, Monterey, CA, 2009.

[11] National Aeronautical Space Administration. (February 2013). “NASA’s Van
Allen Probes Reveal Previously Undetected Radiation Belt Around Earth,”
[Online]. Available:
http://www.nasa.gov/mission_pages/sunearth/news/gallery/20130228-
radiationbelts.html#.UmBZofnbNCg. [Accessed 02 October 2013].

 124

[12] B. Bridgford, C. Carmichael and C. W. Tseng, “Single Event Upset Mitigation
Selection Guide” (XAPP 987) v1.0, Xilinx Application Notes, Mar. 2008.

[13] J. E. Parks, “The Compton Effect—Compton Scattering and Gamma Ray
Spectroscopy,” Department of Physics, University of Tennessee, Knoxville, TN,
2009.

[14] F. B. Mclean and T. R. Oldham, “Basic Mechanisms of Radiation Effects in
Electronic Materials and Devices,” Harry Diamond Laboratories, Adelphi, MD,
1987.

[15] J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P.
Paillet and V. Ferlet-Cavrois, “Radiation Effects in MOS Oxides,” IEEE
Transactions of Nuclear Science, vol. 55, no. 4, 2008.

[16] D. White, “Considerations Surrounding Single Event Effects in FPGAs, ASICs
and Processors,” Xilinx, San Jose, CA, White Paper (WP402), 2012.

[17] E. P. Wilcox, S. D. Phillips, P. Cheng, T. Thrivikraman, A. Madan, J. D. Cressler,
G. Vizkelethy, P. W. Marshall, C. Marshall, J. A. Babcock, K. Kruckmeyer, R.
Eddy, G. Cestra and B. Zhang, “Single Event Transient Hardness of a New
Complementary (npn + pnp) SiGe HBT Technology on Thick-Film SOI,” IEEE
Transactions on Nuclear Science, vol. 57, no. 6, 2010.

[18] J. R. Schwank, V. Ferlet-Cavrois, M. R. Shanyfelt, P. Paillet and P. E. Dodd,
“Radiation Effects in SOI Technologies,” IEEE Transactions on Nuclear Science,
vol. 50, no. 3, 2003.

[19] K. Haque, “Radiation Hard FPGA Configuration Techniques using Silicon on
Sapphire,” M.S. thesis, RMIT University, Melbourne, Australia, 2011.

[20] “UltraCMOS® Process Technology Overview,” Peregrine Semiconductor.
[Online]. Available: http://www.psemi.com/content/ultracmos-process/ultracmos-
process-tech.php. [Accessed 18 October 2013].

[21] D. Nenni, “The Semiconductor Wiki Project.” (26 August 2012). [Online].
Available: http://www.semiwiki.com/forum/content/1596-brief-history-field-
programmable-devices-fpgas.html. [Accessed 19 October 2013].

[22] Xilinx, Xilinx 7 Series FPGAs Overview Datasheet, Xilinx, 2013.

[23] K. Underwood, “FPGAs vs CPUs: Trends in Peak Floating Point Performance,”
Sandia National Laboratories, Albuquerque, NM, 2004.

[24] Altium, Altium Designer’s Guide—FPGA Design Basics, 2008.

 125

[25] J. J. Wang, “Radiation Effects in FPGAs,” Actel Corporation, Mountain View,
CA, 2008.

[26] J. Frank Hall Schmidt, “Fault Tolerant Design Implementation on Radiation
Hardened By Design SRAM-Based FPGAs,” M.S. thesis, Massachusetts Institute
of Technology, Boston, MA, 2013.

[27] T. Miyahira and G. Swift, “Evaluation of Radiation Effects in Flash Memories,”
in MAPLD Conference, Greenbelt, MD, 1998.

[28] N. H. Rollins, “Hardware and Software Fault-Tolerance of Softcore Processors
Implemented in SRAM-Based FPGAs,” PhD dissertaion, Brigham Young
University, Provo, UT, 2012.

[29] Xilinx, Radiation-Hardened, Space-Grade Virtex-5QV Family Overview
Datasheet, Xilinx, San Jose, CA, 2012.

[30] M. Niknahad, O. Sander and J. Becker, “QDFR—An Integration of Quadded
Logic for Modern FPGAs to Tolerate High Radiation Effect Rates,” in Radiation
and Its Effects on Components and Systems (RADECS), 12th European
Conference, Sevilla, Spain, 2011.

[31] J. Tryon, “Redundant Logic Circuitry.” U.S. Patent 2,942,193, 30 July 1958.

[32] P. A. Jensen, “Quadded NOR Logic,” IEEE Transtions on Reliability, vols. R-12,
no. 3, pp. 22–31, 1963.

[33] J. Von Neumann, “Probabilistic Logics and the synthesis of relaible organism
from unreliable components,” in Automata Studies, no 34. Princeton, NJ:
Princeton University Press, 1956.

[34] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redundancy to
Improve Computer Reliability,” IBM Journal of Research and Development, vol.
6, no. 2, 1962.

[35] M. Niknahad, O. Sander and J. Becker, “Fine Grain Fault Tolerance—A Key to
High Reliability for FPGAs in Space,” in Aerospace Conference, 2012 IEEE, Big
Sky, MT, 2012.

[36] J. Han and P. Jonker, “A Study On Fault-Tolerant Circuits Using Redundancy,”
Delft University of Technology, Delft, The Netherlands.

[37] B. Sklar and P. K. Ray, Digital Communications: Fundamentals and
Applications. Upper Saddle River, NJ: Prentice Hall, 2001.

 126

[38] B. Shim, S. Sridhara and N. Shanbhag, “Reliable low-power digitial signal
processing via reduced precision redundancy,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 12, no. 5, pp. 497–500, 2004.

[39] B. Pratt, “SEU Mitigation,” Brigham Young University. (2012). [Online].
Available: http://www.brianhpratt.net/cms/index.php?page=seu-mitigation.
[Accessed 19 October 2013].

[40] J. Emmert, C. Skaggs and M. Abramovici, “Dynamic Fault Tolerance in FPGAs
via Partial Reconfiguration,” in IEEE Symposium on Custom Computing
Machines, Napa, CA, 2000.

[41] C. M. Hicks, “NPS Cubesat Launcher Program Management,” M.S. thesis, Naval
Postgraduate School, Monterey, CA, 2009.

[42] G. Burdis, “The Atlas V Aft Bulkhead Carrier - Requirements for the Small
Satellite Designer,” in 24th Annual AIAA/USU Conference on Small Satellites,
Logan, UT, 2010.

[43] T. C. Program, Poly Picosatellite Orbital Deployer Mk III ICD. San Luis Obispo,
CA: California Polytechnic State University, 2007.

[44] F. Irom, F. Farmanesh, M. White and C. K. Kouba, Frequency Dependence of
Single-Event Upset in Highly Advanced PowerPC Microprocessors. Pasadena,
CA: California Institute of Technology, NASA JPL, 2006.

[45] Microsemi Corporation, “MHS Series 5 amp solid state relay datasheet,”
Microsemi Corporation, Aliso Viejo, CA, 2012.

[46] C. Carmichael, E. Fuller, P. Blain and M. Caffrey, “SEU Mitigation Techniques
for Virtex FPGAs in Space Applications,” Xilinx, Los Alamos, NM, 1991.

[47] D. J. Smith, “VHDL & Verilog Compared & Contrasted.” (2003). [Online].
Available: http://www.angelfire.com/in/rajesh52/verilogvhdl.html. [Accessed 4
November 2013].

[48] P. P. Shirvani and E. J. McCluskey, “SEU characterization of digital circuits
using weighted test programs,” Center for Reliable Computing, Stanford, CA,
2001.

[49] Microsemi Corporation, Using Synplify to Design in Microsemi Radiation-
Hardened FPGAs (Application Note AC139). Aliso Viejo, CA: Microsemi
Corporation, 2012.

[50] Microsemi, Maximizing logic Utilization in eX, SX, and SX-A FPGA Devices
Using cc Macros (Application Note AC201). Aliso Viejo, CA: Microsemi
Corporation, 2012.

 127

[51] P. Adell and G. Allen, “Assessing and mitigating radiation effects in Xilinx
FPGAs,” Jet Propulsion Laboratory, Pasadena, CA, 2008.

[52] Actel, ARM Cortex M1 Enabled ProASIC3L Development Kit Datasheet. Aliso
Viejo, CA: Actel Corporation, 2009.

[53] Digilent, Inc., Genesys Board Reference Manual. Pullman, WA: Digilent, Inc.,
2013.

[54] K. O’Niell, “Antifuse FPGA Technology: Best Option for Satellite Applications,”
COTS Journal, 2003.

 128

THIS PAGE INTENTIONALLY LEFT BLANK

 129

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Purpose
	B. Previous Work
	1. NPS Configurable Fault-Tolerant Processor Project
	2. Parobek’s Hardware
	3. Majewicz’s TMR Research

	C. NPSCuL and Sequencer History
	1. NPS Cube Sat Launcher
	2. NPSCuL Sequencer

	D. Thesis Organization

	II. Fault Tolerance
	A. Radiation Environment and Effects
	1. Radiation Environment on Orbit
	2. Radiation Interactions with Electronic Materials
	3. Radiation Effects on Electronic Component Operation

	B. Fault tolerance by Radiation Hardening
	1. Silicon on Insulator and Silicon on Sapphire
	2. FPGA Technology
	a. Anti-fuse FPGAs
	b. Flash Based FPGAs
	c. SRAM Based FPGAs

	C. Fault Tolerance by Logic Design
	1. Quadded Logic
	2. Quadruple Force Decide Redundancy
	3. Triple-Modular Redundancy
	4. Triplicated Interwoven Redundancy
	5. Error Correcting Codes and Reduced Precision Redundancy
	6. Configuration Scrubbing

	D. Chapter Summary

	III. Sequencer Design
	A. Sequencer History
	B. Requirements
	1. Operational Requirements
	2. Electrical Interface Requirements
	a. Power Supply
	b. Non-Explosive Actuators
	c. Door Position Detection

	3. Mechanical Requirements
	4. Performance Requirements

	C. Sequencer Flow and State Machine
	1. Flowcharting the Design
	2. Developing a State Machine

	D. Software Design
	1. State Registers
	2. Next State Logic
	a. Start State
	b. Wait State
	c. Launch State
	d. Launch Success
	e. Launch Fail
	f. Advance

	3. Timer
	4. Memory
	5. 3-Bit Decoder
	6. State Encoding

	E. Hardware Description
	1. Hardened Launch Voter
	2. Input Triplication

	F. Chapter Summary

	IV. Sequencer Fault Tolerance
	A. Software Implementation and Testing Methods
	1. Software Tools
	2. Testing Methods
	a. Potential Error Types
	(1) Stuck-at-Zero. In this error type, the value at a particular gate input or output is stuck at zero, indicating a low value regardless of the required condition. For example, an SEE that caused a short to ground inside one of the device transisto...
	(2) Stuck-at-One. Similar to the stuck-at-zero case, except here the short is to a source that is at the FPGA’s operating voltage or simply above the threshold voltage for the individual transistor. This indicates a logical one on the stuck signal l...
	(3) Floating Input / Output. A floating input or output is exceptionally difficult to locate or detect during testing of a physical device. An input that is electrically disconnected from a gate input causes the gate to behave erratically. The gate...
	(4) Single-Bit Inversions (Bit-Flips). A bit flip occurs when a temporarily stored value in the circuit is altered by an SEE. Some examples are a bit stored in RAM or the current output value of a flip-flop or register. If an SET occurs at the wron...

	b. Selected Error Sets
	(1) Bit-flip in the Timer Module’s Timeout Signal. The timeout signal is used to indicate that the programed value in the timer has been reached. This indicates to the sequencer that the time between launches has expired and it should proceed with a...
	(2) Bit-flip in the P-POD Select Bus from the Memory Module. The P-POD select bus line is the communication path from the memory module to the next state selection logic. An SET in a signal line here can cause the sequencer to launch the wrong P-POD...
	(3) Bit-flips in the State output Bus from the State Registers. In any sequential machine, the current and next-state values determine everything that the machine is doing at the time. Any change to these values results in improper and very unpredict...
	(4) Floating Input in the state output Bus from the State Registers. A floating input can be inserted to simply track the potential effects of this error on a real FPGA. This test is performed primarily to determine if the simulation of TMR design i...
	(5) Bit-flip in the TMR Logic Circuit. When TMR logic is introduced to a design, it also introduces additional locations for SEUs to occur. A bit-flip inserted inside the TMR logic module determines if the design is able to compensate for this parti...
	(6) Bit-flip in the FPGA Configuration. An error in the FPGA configuration memory itself is very challenging to simulate, as the exact effects depend largely on where the errors occur. A worst-case SEU can cause any of the previously mentioned error...

	c. Configurable Fault Modules

	B. Single Module Performance
	1. Timeout Fault
	2. P-POD Select Fault
	3. State Output Error—MSB
	4. State Output Error—LSB

	C. Manual TMR Configuration and Performance
	1. Timeout Fault
	2. P-POD Select Fault
	3. State Output Error—MSB
	4. State Output Error—LSB
	5. Voter Module Fault

	D. Software TMR Configuration and Performance
	1. TMR on State out Registers
	2. TMR on Top Level Sequencer Module
	3. Timeout Fault
	4. P-POD Select Fault
	5. State Out Errors
	6. Voter Module Fault
	a. Timer Voter Faults
	b. Memory Voter Faults
	c. State Voter Faults

	E. Chapter Summary

	V. Hardware Implementation and Analysis
	A. FPGA Implementation
	1. Design Entry
	2. Synthesis
	3. Place and Route

	B. FPGA Metrics
	1. Synthesis Results
	2. Fault Tolerant Place and Route

	C. Timing Analysis
	D. Test Hardware Implementation
	1. Board Selection
	2. Design Modification for Hardware Testing
	3. Hardware Testing

	E. Chapter Summary

	VI. Conclusion and Recommendations for Future Work
	A. Conclusions
	B. Follow-on Research
	1. Radiation Testing
	2. Place and Route Effects on MBU
	3. Additional FPGA Features/Uses
	4. Software Comparison

	appendiX A. Design schematics
	A. Single Sequencer Top Level Schematic
	B. Single Sequencer With Fault Modules Top Level Schematic
	C. Manual TMR Sequencer with internal fault modules Top Level Schematic
	1. Manual TMR Basic Sequencer Module
	2. Manual TMR Basic Sequencer Module with Fault Modules

	D. Software TMR Sequencer with Fault Modules

	Appendix B. Verilog Code
	A. State Registers
	B. Timer Module
	C. Next State Module
	D. Sequence Memory Module
	E. Launch Decoder
	F. One-Bit Voter Module
	G. State Voter Module
	H. State Voter With Fault Insertion
	I. Behavioral Test Fixture

	List of References
	Initial distribution list

